Python语言的优势
基于以下三个原因,选择Python作为实现数据挖掘算法的编程语言:
(1) Python的语法清晰;
(2) 易于操作纯文本文件;
(3) 使用广泛,存在大量的开发文档。
Python具有清晰的语法结构,也被称作可执行伪代码(executable pseudo-code)。
默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。
使用这些数据类型使得实现抽象的数学概念非常简单。此外,还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。
Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。
诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造数据挖掘应用,而且MATLAB的运算速度也很快。
然而MATLAB的不足之处是软件费用太高&#x
基于以下三个原因,选择Python作为实现数据挖掘算法的编程语言:
(1) Python的语法清晰;
(2) 易于操作纯文本文件;
(3) 使用广泛,存在大量的开发文档。
Python具有清晰的语法结构,也被称作可执行伪代码(executable pseudo-code)。
默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。
使用这些数据类型使得实现抽象的数学概念非常简单。此外,还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。
Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。
Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。
诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造数据挖掘应用,而且MATLAB的运算速度也很快。
然而MATLAB的不足之处是软件费用太高&#x