28、AWS安全事件响应全流程解析

AWS安全事件响应全流程解析

1. 利用AWS服务降低事件发生概率

为了将安全事件发生的概率降到最低,我们可以充分利用AWS提供的各类服务。以下介绍两款重要的服务:

1.1 AWS Systems Manager

AWS Systems Manager(曾用名Simple Systems Manager,简称AWS SSM)可用于查看和控制AWS上的基础设施。通过SSM控制台,能评估多个AWS服务的运营信息,并对AWS资源执行自动化任务。

若要将AWS SSM用作事件响应工具,云管理员需在云基础设施的每个实例上安装AWS SSM Agent。该代理使SSM能够更新、管理和配置EC2实例、本地服务器和虚拟机(VM)。在一些常见的EC2实例镜像中,如Amazon Linux、Amazon Linux 2、Ubuntu Server 16.04等,SSM Agent是预安装的。

1.2 Amazon Macie

Amazon Macie是一款完全托管的数据安全服务,它借助机器学习和模式匹配技术,帮助安全专业人员发现、监控和保护存储在AWS中的敏感数据。其自动化发现服务可识别Amazon S3中的敏感数据,如个人身份信息和财务数据,并实时监控和评估每个包含敏感数据的AWS S3存储桶的安全性和访问控制。

随着数据收集的普及,组织通常会在各种数据存储介质中存储大量数据。而微服务的使用更是增加了存储基础设施的复杂性,因为微服务往往不采用共享存储层。并非所有数据都具有相同的重要性,最敏感的数据,如客户的个人身份信息、医疗记录和财务记录等,需要特别关注。安全工程师应识别和分类所有可能存储敏感数据的系统,以增强

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值