熬夜协会会长
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、Elman循环神经网络应用案例研究
本文探讨了Elman循环神经网络在生物医学工程和核工程中的应用。在生物医学领域,利用Lyapunov指数和小波系数作为特征,结合RNN对多普勒超声信号和癫痫患者心电图进行分类,表现出高准确率和高效性;在核工程中,采用RNN结合Levenberg-Marquardt算法预测钍聚变增殖堆的中子参数,结果与传统方法高度一致。研究表明Elman网络在处理非线性、时序数据方面具有强大能力,具备广泛的应用前景。原创 2025-11-08 06:54:28 · 33 阅读 · 0 评论 -
15、不确定随机高阶时变延迟Hopfield神经网络稳定性及二维离散时滞Hopfield神经网络动力学分析
本文研究了不确定随机高阶时变延迟Hopfield神经网络的全局渐近稳定性,基于Lyapunov理论和Ito公式,结合线性矩阵不等式(LMIs)方法,提出了新的稳定性判据,并通过数值例子验证了其有效性。同时,对二维离散时滞Hopfield神经网络进行了完整的稳定性和分岔分析,揭示了零解的稳定性域结构及边界上的多种分岔类型,包括Fold、Neimark-Sacker和双Neimark-Sacker分岔等。研究还探讨了两种网络的关联与差异、实际应用价值及未来研究方向,为复杂神经网络的动力学分析与工程应用提供了理论原创 2025-11-07 15:59:19 · 20 阅读 · 0 评论 -
14、基于混沌退火递归神经网络的改进极值搜索算法及其应用
本文提出了一种基于混沌退火递归神经网络(CARNN)的改进极值搜索算法(ESA),通过引入CARNN有效解决了传统ESA中存在的输出抖振、控制律切换和易陷入局部极小值等问题。该方法将优化过程分为基于混沌的粗搜索和基于递归神经网络的精细搜索两个阶段,显著提升了系统的动态性能和全局搜索能力。通过在简化无人机紧密编队飞行模型和Schaffer函数上的仿真验证,表明该方法能够稳定收敛至全局极值点,且具有良好的工程应用前景。同时,文章还提供了关键参数的选择建议,并展望了其在多目标优化、实时性提升及与其他智能算法融合的原创 2025-11-06 13:12:46 · 26 阅读 · 0 评论 -
13、神经动力学优化:迈向非凸性
本文综述了基于递归神经网络的神经动力学优化方法在求解非凸优化问题中的最新进展。重点介绍了针对伪凸优化问题的两层投影神经网络(TLPNN)和单层投影神经网络(PNN),以及适用于一般非凸问题的扩展投影神经网络(EPNN)和基于增广拉格朗日函数的神经网络模型。文章分析了各类网络的动态方程、平衡点与最优解的关系及其收敛性条件,并通过数值示例验证理论结果。最后,提出了未来研究方向,包括EPNN的全局收敛性分析和新模型在非凸优化中的应用探索。原创 2025-11-05 12:07:11 · 26 阅读 · 0 评论 -
12、循环神经网络在优化问题中的应用
本文探讨了循环神经网络在解决各类优化问题中的应用,涵盖线性、二次和非线性规划以及变分不等式与互补问题。文章介绍了基于动态系统的神经网络建模方法,重点分析了多种连续时间神经网络模型的结构、收敛性与稳定性,并通过数值示例验证其有效性。相较于传统优化算法,该方法适用于实时在线求解,具有并行处理能力强、全局收敛性好等优势。文末提供了实际练习,帮助读者深入理解神经网络在优化领域的实现与应用。原创 2025-11-04 13:26:10 · 15 阅读 · 0 评论 -
11、解决多种优化问题的递归神经网络方法
本文提出了一种基于改进Hopfield网络的递归神经网络方法,用于解决多种优化问题,包括组合优化、动态规划和非线性优化。该方法通过引入两个能量函数——Econf和Eop,分别处理约束条件和优化目标,无需使用惩罚参数,确保了求解的精度与收敛稳定性。利用有效子空间技术,网络参数可明确计算,避免了传统训练算法的复杂性。仿真结果表明,该网络在不同问题上均能快速收敛到最优解,且具有良好的通用性和硬件实现性。文章还分析了其在工程优化、图像处理和物流调度等领域的应用前景,并展望了未来结合其他算法和拓展应用场景的发展方向。原创 2025-11-03 14:44:24 · 19 阅读 · 0 评论 -
10、确定性线性化递归神经网络在降雨 - 径流过程中的应用
本文介绍确定性线性化递归神经网络(DLRNN)在降雨-径流过程建模中的应用。通过将状态空间模型与神经网络结合,DLRNN不仅能够高效模拟动态水文过程,还能通过权重与单位水文图(UH)的数学关系揭示物理意义。文章提出改进的系统识别方法,融合间接识别与子空间算法,提升模型校准效率,并设计基于梯度的在线学习算法实现模型动态更新。实验结果表明,DLRNN在模拟精度和结构优化方面优于传统前馈神经网络和概念性模型,且能有效识别降雨-径流过程的时变特性。该研究为神经网络在水文领域的可解释性与实用性提供了新路径。原创 2025-11-02 11:16:39 · 17 阅读 · 0 评论 -
9、循环神经网络的新型监督学习算法及离散时间域L2稳定性分析
本文提出了一种新型的鲁棒自适应梯度下降(RAGD)训练算法,用于提升循环神经网络(RNN)在实时信号处理中的收敛速度与稳定性。该算法通过混合自适应学习率、死区学习率和归一化因子,在标准反向传播与归一化RTRL之间动态切换,实现快速瞬态响应与良好稳态性能的平衡。基于Cluett定律和Lyapunov方法,对SISO和MIMO结构的RNN进行了离散时间域下的L2稳定性分析,证明了权重估计误差的有界性与收敛性。通过时间序列预测、Hammerstein-Wiener模型跟踪和二值图像模式关联三个仿真案例验证了RAG原创 2025-11-01 09:55:19 · 17 阅读 · 0 评论 -
8、基于递归高阶神经网络的重型车辆侧翻控制
本文提出了一种基于递归高阶神经网络(RHONN)的自适应控制方法,用于预防重型车辆在转弯等工况下的侧翻事故。通过构建14自由度牵引半挂车模型,结合GPS道路信息实现侧翻威胁的提前预测,并设计了速度控制与速度-偏航率控制两种策略。仿真结果表明,所提出的控制方案能有效降低横向加速度和挂车侧倾角,显著提升行车安全性。相比传统方法,该方法具有更强的鲁棒性、更低的成本和更优的控制效果,适用于存在参数不确定性与未建模动态的复杂场景。文章还给出了系统部署建议、驾驶员培训方案及未来技术改进方向,展示了其在智能交通系统中的广原创 2025-10-31 09:27:24 · 23 阅读 · 0 评论 -
7、具有不对称隶属函数的递归区间2型模糊神经网络解析
本文提出了一种具有不对称隶属函数的递归区间2型模糊神经网络(RiT2FNN-A),结合了区间2型模糊逻辑系统的不确定性处理能力与递归神经网络的动态记忆特性。通过引入不对称高斯隶属函数,提升了模型的逼近精度和灵活性。网络采用五层结构,包含反馈层以捕捉时间序列动态信息,并利用梯度下降法进行参数学习,基于Lyapunov稳定性理论证明了系统的收敛性。在非线性混沌系统识别中的仿真结果表明,RiT2FNN-A相比传统T2FNN和T2FNN-A具有更小的网络结构、更少的参数及更低的训练误差(TMSE0.00019886原创 2025-10-30 09:02:41 · 24 阅读 · 0 评论 -
6、循环模糊神经网络及其性能分析
本文研究了一种能够处理模糊信息并具备动态映射能力的循环模糊神经网络(RFNN),提出基于差分进化优化(DEO)的训练算法,以解决传统梯度方法易陷入局部极小值的问题。RFNN通过内部反馈连接捕捉系统动态特性,所有节点可处理语言型模糊信息。文章详细阐述了网络结构、参数表示、模糊数据处理及DEO训练流程,并在非线性系统识别、动态工厂建模、太阳黑子与汽油需求预测、电池充电控制等多个基准与实际应用中验证了其优越性能。实验结果表明,RFNN在保持简洁网络结构的同时,显著提升了预测精度与控制效率,具有良好的泛化能力和应用原创 2025-10-29 13:46:00 · 18 阅读 · 0 评论 -
5、基于自构建递归神经网络的自适应控制设计
本文提出一种基于自构建递归神经网络(SRNN)的自适应控制(RNNAC)方法,用于解决未知非线性系统的跟踪控制问题。该方法结合神经网络逼近、结构自适应学习与鲁棒控制技术,通过在线调整SRNN的结构和参数实现对理想控制器的逼近,并利用鲁棒控制器抑制逼近误差,确保系统在Lyapunov意义下的稳定性和指定的L2衰减性能。仿真结果表明,该方法在无需先验系统模型的情况下,对混沌系统实现了良好的鲁棒跟踪控制效果,且较小的鲁棒增益κ有助于提升控制性能。原创 2025-10-28 15:28:22 · 15 阅读 · 0 评论 -
4、碳氢化合物生物降解过程的递归神经网络识别与自适应神经控制
本文提出了一种基于卡尔曼滤波器闭环拓扑结构的递归神经网络(KF RNN),用于未知碳氢化合物生物降解过程的建模与识别。通过在生物堆系统和旋转鼓中的实验与仿真,验证了KF RNN在处理非线性、噪声干扰和复杂动态方面的有效性。结合滑模控制(SMC)和直接自适应神经控制(DANC)方案,实现了精确的参考跟踪与控制性能。结果表明,DANC由于其更强的非线性和适应性,在控制精度和鲁棒性方面优于SMC。研究为复杂环境修复过程的智能建模与控制提供了有效工具。原创 2025-10-27 16:22:02 · 22 阅读 · 0 评论 -
3、语言生成能力与循环神经网络
本文探讨了循环神经网络(RNN)在自然语言生成能力中的表现,重点分析了递归性和系统性两大核心属性。通过理论推导与实验验证,研究发现简单循环神经网络(SRN)虽具备一定的递归识别和词汇分类能力,但在学习复杂语法时存在不稳定性与泛化困难。文章进一步讨论了歧义单词、多样上下文带来的挑战,并提出了引入语义信息、注意力机制、先验知识及改进网络结构等未来研究方向,旨在提升神经网络对自然语言的可学习性与生成能力。原创 2025-10-26 12:02:54 · 15 阅读 · 0 评论 -
2、动态递归神经网络对生物信号的识别:从动眼神经积分器到复杂人类运动与 locomotion
本文探讨了动态递归神经网络(DRNN)在生物信号识别中的应用,从模拟动眼神经积分器到人类复杂运动与 locomotion 的控制。通过引入固定连接符号、人工神经元距离和模块化子网络结构,DRNN不仅成功模拟了神经积分器的簇状组织特性,还在处理肌电(EMG)信号与运动学关系中展现出良好的生理合理性。研究进一步提出具有姿势与惯性子网络的模块化DRNN架构,结合高斯因子和通信通道,实现了更高效、可解释性强的运动识别模型。结果表明,DRNN在理解大脑运动控制机制及未来假肢控制等临床应用方面具有巨大潜力。原创 2025-10-25 09:49:06 · 22 阅读 · 0 评论 -
1、具有稳态的循环神经网络中的非周期(混沌)行为:作为行为新奇性的来源及应用
本文探讨了具有自适应阈值(稳态)的循环神经网络(RNN)在具身认知智能体中的应用,提出稳态机制可引发非周期性或混沌神经动力学,防止系统收敛至固定点或极限环,从而促进行为探索与新奇性生成。通过极简铰接智能体和视觉注意力模型的仿真,展示了稳态如何扩展状态空间探索能力,并结合自我感知(如本体感受和视觉输入)改变神经与身体配置的概率分布,增强智能体对环境的适应性。文章构建了认知系统的元模型,强调微观神经层面与宏观身体配置之间的双向多级因果关系,并指出该框架在肌肉控制、注意力机制等领域的潜力,为未来认知建模与自主智能原创 2025-10-24 10:09:38 · 21 阅读 · 0 评论
分享