不确定随机高阶时变延迟Hopfield神经网络稳定性及二维离散时滞Hopfield神经网络动力学分析
1. 引言
神经网络在图像处理、模式识别、优化求解器、定点计算等工程领域有着广泛应用,这些应用在很大程度上依赖于神经网络的动态行为。其中,稳定性是神经网络最重要的行为之一,一直是研究的重点。同时,由于放大器的有限开关速度和神经元的固有通信时间,时滞在神经网络中经常出现,时滞的存在往往是神经网络不稳定的根源,因此对时滞神经网络的稳定性研究具有重要的理论和实践意义。
Hopfield提出的Hopfield神经网络(HNNs)在许多领域得到了应用,其目标问题可归结为优化问题。近年来,HNNs及其各种推广形式吸引了众多科学家的关注,因为它们在分类、联想记忆、并行计算等任务中具有潜力,并且能够解决复杂的优化问题。然而,一阶HNNs存在内在局限性,高阶神经网络由于具有更强的逼近性、更快的收敛速度、更大的存储容量和更高的容错性,受到了更多的关注。
本文主要研究一类不确定随机高阶时变延迟Hopfield神经网络的全局稳定性,基于Lyapunov稳定性理论,提出了基于线性矩阵不等式(LMIs)的新的全局渐近稳定性准则,并通过数值例子验证了所提出的稳定性结果的有效性。同时,还对二维离散时滞Hopfield神经网络进行了完整的稳定性和分岔分析,揭示了零解的稳定性域结构以及边界处分岔的类型。
2. 问题描述与预备知识
在本文中,使用符号 (A > 0)(或 (A < 0))表示矩阵 (A) 是对称正定(或负定)矩阵,(A^T) 和 (A^{-1}) 分别表示矩阵 (A) 的转置和逆。对于对称矩阵 (A) 和 (B),(A > B)((A \g
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



