EDA-数据探索性分析

赛题:零基础入门数据挖掘 - 二手车交易价格预测

EDA的目标

  • 熟悉数据集,了解数据集,数据表达了什么
  • 数据挖掘结构
  • 初步分离出一些重要特征
  • 挖掘离群数据和异常数据
  • 初步确定可以用的模型

绘图方法

  • 时序图(变化规律)
  • 直方图(分布)
  • 密度曲线(分布)
  • 箱型图(查看数据异常情况)(不同数据间分布的对比)
  • 小提琴图(进阶版的箱型图)(某个值附近的概率分布)

量化方法

  • 相关性分析
  • 独立性分析

内容介绍

  1. 载入各种数据科学以及可视化库:

pip install 安装,特殊情况例如 pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple

  • 数据科学库 pandas、numpy、scipy;
  • 可视化库 matplotlib、seabon;
  • 其他;
  1. 载入数据:
  • 载入训练集和测试集;
  • 简略观察数据(head()+shape);
  1. 数据总览:
  • 通过describe()来熟悉数据的相关统计量
  • 通过info()来熟悉数据类型
  1. 判断数据缺失和异常
  • 查看每列的存在nan情况
  • 异常值检测

有时为了模型效果会剔除掉异常值

如果测试集或带预测的数据本身就包含异常值,在这种情况下,可以采取自己去构造一些规则再应用到t测试数据集当中

  1. 了解预测值的分布
  • 总体分布概况(无界约翰逊分布等)
  • 查看skewness and kurtosis
  • 查看预测值的具体频数
  1. 特征分为类别特征和数字特征,并对类别特征查看unique分布
  2. 数字特征分析
  • 相关性分析
  • 查看几个特征得 偏度和峰值
  • 每个数字特征得分布可视化
  • 数字特征相互之间的关系可视化
  • 多变量互相回归关系可视化
  1. 类型特征分析
  • unique分布
  • 类别特征箱形图可视化
  • 类别特征的小提琴图可视化
  • 类别特征的柱形图可视化类别
  • 特征的每个类别频数可视化(count_plot)
  1. 用pandas_profiling生成数据报告
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值