EDA的目标
- 熟悉数据集,了解数据集,数据表达了什么
- 数据挖掘结构
- 初步分离出一些重要特征
- 挖掘离群数据和异常数据
- 初步确定可以用的模型
绘图方法
- 时序图(变化规律)
- 直方图(分布)
- 密度曲线(分布)
- 箱型图(查看数据异常情况)(不同数据间分布的对比)
- 小提琴图(进阶版的箱型图)(某个值附近的概率分布)
量化方法
- 相关性分析
- 独立性分析
内容介绍
- 载入各种数据科学以及可视化库:
pip install 安装,特殊情况例如 pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
- 数据科学库 pandas、numpy、scipy;
- 可视化库 matplotlib、seabon;
- 其他;
- 载入数据:
- 载入训练集和测试集;
- 简略观察数据(head()+shape);
- 数据总览:
- 通过describe()来熟悉数据的相关统计量
- 通过info()来熟悉数据类型
- 判断数据缺失和异常
- 查看每列的存在nan情况
- 异常值检测
有时为了模型效果会剔除掉异常值
如果测试集或带预测的数据本身就包含异常值,在这种情况下,可以采取自己去构造一些规则再应用到t测试数据集当中
- 了解预测值的分布
- 总体分布概况(无界约翰逊分布等)
- 查看skewness and kurtosis
- 查看预测值的具体频数
- 特征分为类别特征和数字特征,并对类别特征查看unique分布
- 数字特征分析
- 相关性分析
- 查看几个特征得 偏度和峰值
- 每个数字特征得分布可视化
- 数字特征相互之间的关系可视化
- 多变量互相回归关系可视化
- 类型特征分析
- unique分布
- 类别特征箱形图可视化
- 类别特征的小提琴图可视化
- 类别特征的柱形图可视化类别
- 特征的每个类别频数可视化(count_plot)
- 用pandas_profiling生成数据报告