Leetcode:回文数+最长回文子串+回文子串

 

目录

1. 回文数

2. 最长回文子串

3. 回文子串

4.回文对


“回文串”是一个正读和反读都一样的字符串

1. 回文数

判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

示例 1:输入: 121输出: true
示例 2:输入: -121输出: false,解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:输入: 10输出: false,解释: 从右向左读, 为 01 。因此它不是一个回文数。

思路1:转换为字符串,找出中间点,中间扩展(初始想法)

class Solution {
    public boolean isPalindrome(int x) {
        if (x < 0 || (x % 10 == 0 && x != 0)) {
            return false;
        }
        String str = x + "";
        int len = str.length();
        int left = len / 2 + len % 2 - 1;
        int right = len / 2;

        while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
            left--;
            right++;
        }
        return left < 0 && right >= len;
    }
}

思路2:反转后半段数,与前半段比较。若当前数的位数为偶数,则前后相等;若为奇数,则后半段需/10与前半段相等

class Solution {
    public boolean isPalindrome(int x) {
        if (x < 0 || (x % 10 == 0 && x != 0)) {
            return false;
        }
        int revertedNumber = 0;
        while (x > revertedNumber) {
            revertedNumber = revertedNumber * 10 + x % 10;
            x /= 10;
        }
        return x == revertedNumber || x == revertedNumber / 10;
    }
}

2. 最长回文子串

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:输入: "babad",输出: "bab",注意: "aba" 也是一个有效答案。
示例 2:输入: "cbbd",输出: "bb"

思路:中心扩展算法,我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有 2n - 1 个这样的中心。

为什么会是 2n - 1个,而不是 n 个中心?原因在于所含字母数为偶数的回文的中心可以处于两字母之间

时间复杂度:O(n^2)

空间复杂度:O(1)

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) return "";
        int start = 0, end = 0;
        for (int i = 0; i < s.length(); i++) {
            int len1 = expandAroundCenter(s, i, i);
            int len2 = expandAroundCenter(s, i, i + 1);
            int len = Math.max(len1, len2);
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start, end + 1);
    }

    private int expandAroundCenter(String s, int left, int right) {
        int L = left, R = right;
        while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
            L--;
            R++;
        }
        return R - L - 1;
    }
}

3. 回文子串

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:输入:"abc"  输出:3   解释:三个回文子串: "a", "b", "c"
示例 2:输入:"aaa"  输出:6   解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

思路:循环字符串的每个子串,判断是否为回文串,统计数据(初始想法)

class Solution {
    public int countSubstrings(String s) {
        int len = s.length();
        int result = 0;
        for (int i = 0; i < s.length(); ++i) {
            for (int j = i + 1; j <= s.length(); ++j) {
                if (isPalindrome(s.substring(i, j))) {
                    result++;
                }
            }
        }
        return result;
    }

    public boolean isPalindrome(String str) {
        int len = str.length();
        int left = len / 2 + len % 2 - 1;
        int right = len / 2;

        while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
            left--;
            right++;
        }
        return left < 0 && right >= len;
    }
}

思路2:利用中心扩展思想,循环字符串的所有中心位,找出所有子串,如下图,箭头所指出的所有中心位(2n-1)

从左到右中心位所对应左右起始下标

0

0

0

1

1

1

1

2

2

2

2

3

3

3

代码如下

class Solution {
    public int countSubstrings(String s) {
        int result = 0;
        int left, right;
        for (int i = 0; i < 2 * s.length() - 1; ++i) {
            left = i / 2;
            right = i / 2 + i % 2;
            while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
                left--;
                right++;
                result++;
            }
        }
        return result;
    }
}

4.回文对

给定一组 互不相同 的单词, 找出所有不同 的索引对(i, j),使得列表中的两个单词, words[i] + words[j] ,可拼接成回文串。

示例 1:输入:["abcd","dcba","lls","s","sssll"]  输出:[[0,1],[1,0],[3,2],[2,4]]

解释:可拼接成的回文串为["dcbaabcd","abcddcba","slls","llssssll"]

示例 2:输入:["bat","tab","cat"]  输出:[[0,1],[1,0]]   解释:可拼接成的回文串为 ["battab","tabbat"]

思路:暴力法,枚举每一种情况,判断是否回文串,返回,超时未通过

class Solution {
    public List<List<Integer>> palindromePairs(String[] words) {
        List<List<Integer>> result = new ArrayList<>();
        if(words.length <= 1){
            return null;
        }

        for(int i = 0; i < words.length; ++i){
            for(int j = 0; j < words.length; ++j){
                if(j == i){
                    continue;
                }
                if(isPalindrome(words[i]+words[j])){
                    List<Integer> list = new ArrayList<>();
                    list.add(i);
                    list.add(j);
                    result.add(list);
                }
            }
        }
        return result;
    }

    public boolean isPalindrome(String str) {
        int len = str.length();
        int left = len / 2 + len % 2 - 1;
        int right = len / 2;

        while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
            left--;
            right++;
        }
        return left < 0 && right >= len;
    }
}

思路2:枚举前缀和后缀

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值