目录
“回文串”是一个正读和反读都一样的字符串
1. 回文数
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:输入: 121输出: true
示例 2:输入: -121输出: false,解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:输入: 10输出: false,解释: 从右向左读, 为 01 。因此它不是一个回文数。
思路1:转换为字符串,找出中间点,中间扩展(初始想法)
class Solution {
public boolean isPalindrome(int x) {
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
String str = x + "";
int len = str.length();
int left = len / 2 + len % 2 - 1;
int right = len / 2;
while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
left--;
right++;
}
return left < 0 && right >= len;
}
}
思路2:反转后半段数,与前半段比较。若当前数的位数为偶数,则前后相等;若为奇数,则后半段需/10与前半段相等
class Solution {
public boolean isPalindrome(int x) {
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int revertedNumber = 0;
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
return x == revertedNumber || x == revertedNumber / 10;
}
}
2. 最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:输入: "babad",输出: "bab",注意: "aba" 也是一个有效答案。
示例 2:输入: "cbbd",输出: "bb"
思路:中心扩展算法,我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有 2n - 1 个这样的中心。
为什么会是 2n - 1个,而不是 n 个中心?原因在于所含字母数为偶数的回文的中心可以处于两字母之间
时间复杂度:O(n^2)
空间复杂度:O(1)
class Solution {
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}
}
3. 回文子串
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:输入:"abc" 输出:3 解释:三个回文子串: "a", "b", "c"
示例 2:输入:"aaa" 输出:6 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
思路:循环字符串的每个子串,判断是否为回文串,统计数据(初始想法)
class Solution {
public int countSubstrings(String s) {
int len = s.length();
int result = 0;
for (int i = 0; i < s.length(); ++i) {
for (int j = i + 1; j <= s.length(); ++j) {
if (isPalindrome(s.substring(i, j))) {
result++;
}
}
}
return result;
}
public boolean isPalindrome(String str) {
int len = str.length();
int left = len / 2 + len % 2 - 1;
int right = len / 2;
while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
left--;
right++;
}
return left < 0 && right >= len;
}
}
思路2:利用中心扩展思想,循环字符串的所有中心位,找出所有子串,如下图,箭头所指出的所有中心位(2n-1)
从左到右中心位所对应左右起始下标
0 | 0 |
0 | 1 |
1 | 1 |
1 | 2 |
2 | 2 |
2 | 3 |
3 | 3 |
代码如下
class Solution {
public int countSubstrings(String s) {
int result = 0;
int left, right;
for (int i = 0; i < 2 * s.length() - 1; ++i) {
left = i / 2;
right = i / 2 + i % 2;
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
result++;
}
}
return result;
}
}
4.回文对
给定一组 互不相同 的单词, 找出所有不同 的索引对(i, j),使得列表中的两个单词, words[i] + words[j] ,可拼接成回文串。
示例 1:输入:["abcd","dcba","lls","s","sssll"] 输出:[[0,1],[1,0],[3,2],[2,4]]
解释:可拼接成的回文串为["dcbaabcd","abcddcba","slls","llssssll"]
示例 2:输入:["bat","tab","cat"] 输出:[[0,1],[1,0]] 解释:可拼接成的回文串为 ["battab","tabbat"]
思路:暴力法,枚举每一种情况,判断是否回文串,返回,超时未通过
class Solution {
public List<List<Integer>> palindromePairs(String[] words) {
List<List<Integer>> result = new ArrayList<>();
if(words.length <= 1){
return null;
}
for(int i = 0; i < words.length; ++i){
for(int j = 0; j < words.length; ++j){
if(j == i){
continue;
}
if(isPalindrome(words[i]+words[j])){
List<Integer> list = new ArrayList<>();
list.add(i);
list.add(j);
result.add(list);
}
}
}
return result;
}
public boolean isPalindrome(String str) {
int len = str.length();
int left = len / 2 + len % 2 - 1;
int right = len / 2;
while (left >= 0 && right < len && str.charAt(left) == str.charAt(right)) {
left--;
right++;
}
return left < 0 && right >= len;
}
}
思路2:枚举前缀和后缀