practice_替换空格、斐波那契数列、跳台阶、变态跳台阶

 

实现一个函数,将一个字符串中的空格替换成“%20”。

eg:We Are Happy.替换之后的字符串为We%20Are%20Happy.

 

#include<stdio.h>
#include<string.h>
#include<windows.h>

/*
替换空格:
实现一个函数,将一个字符串中的空格替换成“%20”
例如,当字符串为We Are Happy.
则经过替换之后的字符串为We%20Are%20Happy。
*/

char *replaceSpace(char *str, int length) {
	char *res = str;
	char *replace = "%20";
	int len = strlen(replace);
	int count = 0;
	while (*str){
		count++;
		if (*str == ' '){
			memmove(str + 2, str, length - count + 2);//将默认的'\0'也后移过去
			char *re1 = replace;
			while (*re1){
				*str = *re1;
				re1++;
				str++;
			}
		}
		else{
			str++;
		}
	}
	return res;
}

int main()
{
	char str[] = "We Are Happy.";
	printf("%s\n", replaceSpace(str, strlen(str)));
	system("pause");
	return 0;
}

运行结果:

迭代求斐波那契数列:特别注意:当n==0时,结果为0。

#include<stdio.h>
#include<string.h>
#include<windows.h>

/*
斐波那契数列
特别注意:当n==0时,结果为0。
*/
int Fibonacci(int n) {
	int first = 1;
	int second = 1;
	int sum = 0;
	if (!n){
		return 0;
	}
	else if (n <= 2){
		return 1;
	}
	else{
		while (n > 2){
			sum = first + second;
			first = second;
			second = sum;
			n--;
		}
	}
	return sum;
}

int main()
{
	printf("%d\n", Fibonacci(1));
	system("pause");
	return 0;
}

 

跳台阶:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<windows.h>

/*
跳台阶:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。
求该青蛙跳上一个n级的台阶总共有多少种跳法。
*/
/*
0 0
1 1(1)
2 2(2/1)
3 3(1 1 1/2 1/1 2)
4 5(1 1 1 1/1 1 2/1 2 1/2 1 1/2 2)
5 8(1 1 1 1 1/1 1 1 2/1 1 2 1/1 2 1 1/2 1 1 1/2 2 1/1 2 2/2 1 2)
*/
int jumpFloor(int number) 
{//找出其中规律:当前台阶次数等于前两数之和
	if (number == 0){
		return 0;
	}
	if (number == 1){
		return 1;
	}
	if (number == 2){
		return 2;
	}
	int one = 1;
	int two = 2;
	int res = 0;
	while (number > 2){
		res = one + two;
		one = two;
		two = res;
		number--;
	}
	return res;
}

int main()
{
	printf("%d\n", jumpFloor(1));

	system("pause");
	return 0;
}

 

变态跳台阶:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<windows.h>

/*
变态跳台阶:
一只青蛙一次可以跳上1级台阶,
也可以跳上2级……它也可以跳上n级。
求该青蛙跳上一个n级的台阶总共有多少种跳法。
*/
/*
0 0
1 1
2 2
3 4(1 1 1/1 2/2 1/3)
4 8(1 1 1 1/1 1 2/1 2 1/2 1 1/2 2/1 3/3 1/4)
5 16(1 1 1 1 1/1 1 1 2/1 1 2 1/1 2 1 1/2 1 1 1/2 2 1/1 2 2/2 1 2/3 1 1/1 3 1/1 1 3/3 2/2 3/4 1/1 4/5)
*/
int jumpFloorII(int number) 
{//找出规律:当前台阶次数是2 的(台阶数-1)次方
	if (number == 0){
		return 0;
	}
	return pow(2, number - 1);
}

int main()
{
	printf("%d\n", jumpFloorII(5));

	system("pause");
	return 0;
}

 

青蛙跳台问题斐波那契数列是经典的编程问题。我们来分别介绍一下。 1. 青蛙跳台问题 一只青蛙一次可以跳上1级台,也可以跳上2级。求该青蛙跳上一个n级的台总共有多少种跳法? 解答: 我们可以用动态规划的思想来解决这个问题。我们用f(n)来表示跳上n级台的跳法数目。对于第一次跳,我们有两种选择:跳一级或者跳两级。如果第一次跳一级,那么剩下的n-1级台就有f(n-1)种跳法;如果第一次跳两级,那么剩下的n-2级台就有f(n-2)种跳法。因此,总的跳法数目就是f(n) = f(n-1) + f(n-2),这就是斐波那契数列的定义。 那么,我们可以写出如下的Python代码来实现青蛙跳台的问题: ```python def jumpFloor(number): if number == 1: return 1 if number == 2: return 2 a, b = 1, 2 for i in range(3, number+1): a, b = b, a+b return b ``` 2. 斐波那契数列 斐波那契数列是指这样一个数列:0、1、1、2、3、5、8、13、21、34、……,在数学上,斐波那契数列以如下被以递归的方法定义: $$ F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} (n \geq 2) $$ 解答: 斐波那契数列具有很好的递归性质,因此我们可以用递归的方式来求解。另一种方法是使用动态规划的思想,用f(n)来表示第n个斐波那契数,那么有f(n) = f(n-1) + f(n-2)。 我们可以写出如下的Python代码来实现斐波那契数列: ```python def Fibonacci(n): if n == 0: return 0 if n == 1: return 1 a, b = 0, 1 for i in range(2, n+1): a, b = b, a+b return b ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值