最近我们被客户要求撰写关于SOM的研究报告,包括一些图形和统计输出。
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例
KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例
,时长06:05
导入
自组织映射 (SOM)是一种工具,通过生成二维表示来可视化高维数据中的模式,在高维结构中显示有意义的模式。通过以下方式使用给定的数据(或数据样本)对SOM进行“训练”:
- 定义了网格的大小。
- 网格中的每个单元都在数据空间中分配了一个初始化向量。
- 例如,如果要创建22维空间的地图,则会为每个网格单元分配一个22维向量。
- 数据被反复输入到模型中进行训练。每次输入训练向量时,都会执行以下过程:
- 识别具有最接近训练向量的代表向量的网格单元。
- 随着训练向量的多次输入,收敛的参数使调整变得越来越小,从而使地图稳定。
该算法赋予SOM的关键特征:数据空间中接近的点在SOM中更接近。因此,SOM可能是表示数据中的空间聚类的好工具。
Kohonen映射类型
下面的示例将使用2015/16 NBA赛季的球员统计数据。我们将查看每36分钟更新一次的球员统计信息。这些数据可从