非线性回归beta系数估算股票市场的风险分析亚马逊股票和构建投资组合

原文链接:http://tecdat.cn/?p=24680 

Beta 假设反映了一种工具对市场的风险。但是,您可以通过各种方式估算此度量。

你可以收缩你的估计来稳定它。另一个方面是这种风险度量的非线性。在红色和绿色的时间里,对市场的敏感性不相同。从结果中我们可以看到:

plot('AMZN' main="AMZN接近于市场收益率的收益率",
     
     xlab="市场收益率",pch=20, axes = F)

ng <- l1coef\[2\]-l1coef\[3\]

ps <- l1coef\[2\]

628a6fc10dd2cfd8edc5512ba3915e7e.png

ff9bc403445793154da113103aedd262.png

5a3e1e13f8def4fb9cd715aeec9f9454.png

c816aa6476d0051d64a7585200a5c4c2.png

我们在这里看到的是,当市场下跌时,AMZN与市场的相关性更强,而当市场上涨时,相关性更弱。有相关的,也有相关的结构。谷歌-金融的β是相关的,它可以是在整个分布中是一样的。就像现在这样,你不希望有β值等于1,它是市场下跌时 beta=0.78 和市场上涨时和beta=0.94 的平均值。如果你是长线,反过来就很好,一个股票在绿色的时间段里反弹,在糟糕的日子里只缓慢下跌。 


点击标题查阅往期内容

55fa6deab80e3c2a1b909e42b650072d.jpeg

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列

outside_default.png

左右滑动查看更多

outside_default.png

01

9dfe9e5af727795b5506140cca3acaca.jpeg

02

1f6bafbaa3111b76445b8d5e075bd668.jpeg

03

f4cf9550acb244439a3eca9e2814b84d.jpeg

04

4e0af9cbfffd1116a6e3b5cb00e580ef.jpeg

我尝试了其他一些金融股,看看这是否是典型的,这是正日(红色)和负日(蓝色)系数的条形图。

for (i in 1:l){
    geSybols(symi\], from=tart, o=endut.asign = )
   # 白天的平均价格

   prv\[1:ltdt0,),i\]=avp
  
}



pol <- ifese(e\[,'SPY'\]>0,ret\['SP'\],0)




for (i in 1:(l-1)){ # 最后一个是市场,因此 l-1。
  
   o\[i,\] <- noibe
  
}

# 颜色

col1 

col2

barpot(co\[,1,add=T)

c73d6f9e61691b4c41d2430c9f4a9cc9.png

花旗是唯一一个在市场下跌过程中具有较强关联性的股票,大多数在整个分布过程中与市场具有相当稳定的关联性,在这方面,摩根士丹利是不错的,可以持有。

5b3fcc3e9629ae8cad51e5985b9bbc74.png

我们看到与 AMZN 完全相反,在下跌的日子里比在上涨的日子里更陡峭。自然地,看看使用这个标准构建的投资组合如何表现。



e11f7c5827b0eaf18d7047e1881f3652.png

本文摘选R语言非线性回归beta系数估算股票市场的风险分析亚马逊AMZN股票和构建投资组合,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

MATLAB用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析

python中的copula:Frank、Clayton和Gumbel copula模型估计与可视化

R语言中的copula GARCH模型拟合时间序列并模拟分析

matlab使用Copula仿真优化市场风险数据VaR分析

R语言多元Copula GARCH 模型时间序列预测

R语言Copula函数股市相关性建模:模拟Random Walk(随机游走)

R语言实现 Copula 算法建模依赖性案例分析报告

R语言ARMA-GARCH-COPULA模型和金融时间序列案例

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言COPULA和金融时间序列案例

matlab使用Copula仿真优化市场风险数据VaR分析

matlab使用Copula仿真优化市场风险

R语言多元CopulaGARCH模型时间序列预测

R语言Copula的贝叶斯非参数MCMC估计

R语言COPULAS和金融时间序列

R语言乘法GARCH模型对高频交易数据进行波动性预测

R语言GARCH-DCC模型和DCC(MVT)建模估计

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

R语言时间序列GARCH模型分析股市波动率

R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略

R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模

R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析

R语言多元Copula GARCH 模型时间序列预测

R语言使用多元AR-GARCH模型衡量市场风险

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

R语言用Garch模型和回归模型对股票价格分析

GARCH(1,1),MA以及历史模拟法的VaR比较

matlab估计arma garch 条件均值和方差模型

R语言ARMA-GARCH-COPULA模型和金融时间序列案例

欲获取全文文件,请点击左下角“阅读原文”。

583c5b92607f649dc31e6a204fb12a19.gif

b950c0979bdd29d18e71d0925dd59679.png

6060591f31eb9951bd41f4fa2a06e069.jpeg

7870d0890c9b53b11cf3445f083ae639.png

欲获取全文文件,请点击左下角“阅读原文”。

1495a22fdec9bdd1b76d935c4ce2b585.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值