R语言上市公司经营绩效实证研究 ——因子分析、聚类分析、正态性检验、信度检验...

本文使用R语言对45家上市公司的16项财务指标进行因子分析和聚类分析,探讨经营绩效相关因素。通过数据预处理、正态性检验、KMO检验,进行因子分析提取主要因素,并利用K-means进行聚类,以理解不同类别公司的经营状况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文链接:http://tecdat.cn/?p=32747

随着我国经济的快速发展,上市公司的经营绩效成为了一个备受关注的话题点击文末“阅读原文”获取完整代码数据)。

相关视频

本文旨在探讨上市公司经营绩效的相关因素,并运用数据处理、图示、检验和分析等方法进行深入研究,帮助客户对我国45家上市公司的16项财务指标进行了因子分析与聚类分析。

分析脉络如下:

  • 数据预处理(包括缺失值,异常值,标准化这些)

  • 数据图示

  • 相关性检验正态性检验

  • 做因子分析和聚类分析

查看数据

6f52072dd5c4a4fe5259a9e603af0cd4.png

读取到r软件中:

44f4aeb0c8ec449524826d606935e2c6.png

数据预处理(包括缺失值,异常值,标准化

首先,在进行数据分析前,需要对数据进行预处理。数据预处理包括缺失值的处理、异常值的排除、标准化处理等。另外,为了减少数据误差,需要对数据进行标准化处理。

data=na.omit(data)

标准化和可视化

其次,在数据处理完成后,需要对数据进行图示。通过绘制散点图等图示,可以直观地了解各项指标的数值分布和趋势变化。同时,图示也有助于发现数据中的异常点和趋势漂移等问题。

14a23a6a03fea4ebbd45ea1c0210d0ab.png

a833dc103737a665d0c24c33490e756b.png


点击标题查阅往期内容

357c82b21e194afab56434d7100fb90a.png

PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

03d92223d5e20a23f966f325976c909e.png

02

5928685cdff689dc870f98b8e8a290ee.png

03

42b50bcec0b4d06bbdf84a8ff1e108a8.png

04

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值