10、Unix编程:模块化、文本性与协议设计的智慧

Unix编程:模块化、文本性与协议设计的智慧

1. 面向对象编程的思考

在软件开发中,将非面向对象(Non - OO)代码转换为类层次结构时需谨慎,过早优化可能并非明智之举。Unix程序员对此有着本能的认知,这也解释了为何在Unix环境下,面向对象(OO)语言未能取代像C、Perl(虽有OO功能但使用不频繁)和shell这样的非OO主力语言。Unix社区对OO编程的批评更为直接,Unix程序员清楚何时不使用OO,即便使用OO语言,他们也会努力保持对象设计的简洁。正如有人所说:“如果你清楚自己在做什么,三层架构就足够了;若不清楚,十七层架构也无济于事”。

OO编程在图形用户界面(GUIs)、模拟和图形等领域取得成功,原因可能在于这些领域中类型的本体论较难出错。例如在GUIs和图形领域,可操作的视觉对象与类之间通常存在自然的映射关系。若创建的类与显示内容无明显映射,就说明代码的关联性过强。

Unix风格设计的核心挑战之一是如何将问题的抽象简化与代码和设计的简洁透明层次结构相结合。

2. 模块化编码

模块化在优秀代码中得以体现,但主要源于良好的设计。在处理代码时,可通过以下问题来提升代码的模块化程度:
- 全局变量数量 :全局变量是模块化的“毒药”,会使组件间随意且无序地泄露信息,还会导致代码不可重入,同一进程中的多个实例可能相互干扰。
- 模块大小 :模块大小是否处于合适范围?若很多模块过大,可能存在长期维护问题。要了解自己和合作程序员的合适模块大小,若不确定,最好保守选择接近Hatton范围下限的大小。
- 函数大小

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线逼近能力和滑模控制的强鲁棒,用于解决复杂系统的控制问题,尤其适用于存在不确定和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效和稳定。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定或外界扰动的实际控制系统中,提升控制精度鲁棒; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值