模型融合的目标:对于多种调参完成的模型进行模型融合。
大体来说有如下的类型方式。
- 简单加权融合:
- 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
- 分类:投票(Voting)
- 综合:排序融合(Rank averaging),log融合
- stacking/blending:
- 构建多层模型,并利用预测结果再拟合预测。
- boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):
- 多树的提升方法
Stacking理论
1)概念:当用初始训练数据学习出若干个基学习器后,将这几个学习器的预判结果作为新的训练集,来学习一个新的学习器。