数据挖掘入门 Task 5 模型融合

本文深入探讨了模型融合的多种策略,包括简单加权融合、stacking/blending、boosting/bagging等,详细解析了每种策略的工作原理及应用场景,为提高机器学习模型的准确性和稳定性提供了有效途径。
摘要由CSDN通过智能技术生成

模型融合的目标:对于多种调参完成的模型进行模型融合。

大体来说有如下的类型方式。

  1. 简单加权融合:
    • 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    • 分类:投票(Voting)
    • 综合:排序融合(Rank averaging),log融合
  1. stacking/blending:
    • 构建多层模型,并利用预测结果再拟合预测。
  1. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):
    • 多树的提升方法

Stacking理论

1)概念:当用初始训练数据学习出若干个基学习器后,将这几个学习器的预判结果作为新的训练集,来学习一个新的学习器。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值