ReID
文章平均质量分 75
赛先生.AI
科技公司CTO。机器学习,深度学习,计算机视觉从业者。网络,流媒体技术,编解码技术爱好者。
曾从事汽车行业,安防行业,现从事无人机行业。
-> tecsai@163.com
展开
-
ReID网络:MGN网络(5): 一点延伸: 缩减特征维度, 提高匹配效率
在实际使用MGN时,是将网络尾部的特征进行导出,并进行相关的相似性度量。MGN原始输出维度为2048(258*8)维,为后续相似度计算增添了不小的压力。本文提供了一些思路。原创 2023-09-13 16:02:27 · 237 阅读 · 0 评论 -
ReID网络:MGN网络(4) - Loss计算
MGN采用三元损失(Triplet Loss)。三元损失主要用于ReID算法,目的是帮助网络学习到一个好的Embedding信息。之所以称之为三元损失,主要原因在于在训练中,参与计算Loss的分别有Anchor、Positive和Negative三方原创 2023-08-30 13:51:19 · 309 阅读 · 0 评论 -
ReID网络:MGN网络(3) - 数据组织
MGN使用Market1501作为训练和验证数据集。由于其使用了Triplet Loss,因此在采样训练数据的时候具有一定特殊的操作方式。原创 2023-08-30 11:48:41 · 135 阅读 · 0 评论 -
ReID网络:MGN网络(2) - 模型定义
MGN网络使用ResNet50((Before res_conv4_2) )作为Backbone进行特征的析取。为了实现多粒度(Multiple Granularities),MGN从ResNet50的网络的尾部开始,将后续网络划分为3个分支,对应三个不同的粒度。原创 2023-08-02 08:03:55 · 177 阅读 · 0 评论 -
ReID网络:MGN网络(1) - 概述
行人重识别(Person Re-identification也称行人再识别,简称为ReID,是利用计算机视觉技术,通过提取在匹配特征,依次判断图像或者视频序列中是否存在特定行人的技术。简单点讲,就是跨摄像头、跨区域实现行人的匹配。ReID被广泛的认为是一个图像检索的子问题。给定一个图像输入点的视频所检索到的行人,在其他视频采集点所采集的视频中检索出现过的人。从另一个角度讲,ReID常被用来作为人脸检测识别的补充。在一些无法获得高质量人脸图像的场合,整体的人体外观信息就被用来作为检索的依据。原创 2023-07-29 22:13:13 · 599 阅读 · 0 评论