YOLOv9
文章平均质量分 77
赛先生.AI
科技公司CTO。机器学习,深度学习,计算机视觉从业者。网络,流媒体技术,编解码技术爱好者。
曾从事汽车行业,安防行业,现从事无人机行业。
-> tecsai@163.com
展开
-
YOLOv9(4): DFL(Distribution Focal Loss)
DFL最早在论文Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection中被提及,在YOLOv8中就已经在使用。DFL的作者认为,在很多时候,检测目标的边界并不是一个确切的值,而是一个分布。原创 2024-05-30 17:26:19 · 5025 阅读 · 1 评论 -
YOLOv9(5):YOLOv9可编程梯度信息PGI(Programable Gradient Infomation)
PGI是YOLOv9的一大特色。为了丰富网络训练过程中,梯度反馈的路径(主要是梯度反馈宽度),尽量减少在训练过程中的网络信息丢失,作者添加了一个PGI(Programable Gradient Infomation)模块。 PGI模块的引入,从宏观上看,就像是网络新加了一条Detect分支(此处将类似以往YOLOv3/5/8等的3条不同分辨率的head路线称为一个Detect分支)。作者将这一条增加的分支乘坐“辅助可逆分支”,用来产生“可信梯度信息”。原创 2024-04-18 16:47:00 · 1057 阅读 · 0 评论 -
YOLOv9(3):YOLOv9损失(Loss)计算
YOLOv9的Loss计算与YOLOv8如出一辙,仅存在略微的差异。多说一句,数据的预处理和导入方式都是一样的。因此如果你已经对YOLOv8了解的比较透彻,那么对于YOLOv9你也只是需要多关注网络结构就可以。YOLOv9本身也是Anchor-Free的,同样采用了解耦头。因此其损失计算的关键同样在于“对齐”,即通过TAL方法实现Ground Truth与Pred grid中的Cell进行对齐,然后计算Loss。原创 2024-03-14 16:43:30 · 2603 阅读 · 2 评论 -
YOLOv9(2):YOLOv9网络结构
本篇主要针对YOLOv9的结构进行简单的描绘。原创 2024-03-06 17:17:09 · 5752 阅读 · 4 评论