96. 不同的二叉搜索树

本文探讨了如何计算由1到n整数构成的不同二叉搜索树的数量,通过递推公式fn=∑k=0n−1fkfn−k−1得出解决方案,并提供了一段C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:https://leetcode-cn.com/problems/unique-binary-search-trees/

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3


思路
遇到这类问题,我们先自己看几个例子
n = 1,只有1种二叉搜索树
n = 2,有两种二叉搜索树

1		  2
 \ 		   \
  2		    1

n = 3,有5种二叉搜索树,如题。
拆解这道题,

  • 1的右边有n = 2(2,3),有2种可能
  • 2的左右分别有n=1(1)和n=1(3),有1*1种可能
  • 3的左边有n = 2(1,2),有2种可能
  • 把以上几种可能累加,正好是5种可能

我们可以总结规律
f n = ∑ k = 0 n − 1 f k f n − k − 1 {f_n} = \sum\limits_{k=0}^{n-1}{f_k}{f_{n-k-1}} fn=k=0n1fkfnk1
f n {f_n} fn就是对应n的二叉搜索树的数目。

参考代码

class Solution {
public:
    int numTrees(int n) {
        if (n <= 2) return n;
        const int N = n + 1;
        int sol[N];
        
        sol[0] = 1;
        sol[1] = 1;
        sol[2] = 2;
        
        for (int i = 3; i <= n; i++) {
            sol[i] = 0;
            for (int j = 0; j < i; j++) {
                sol[i] += sol[j] * sol[i - j - 1]; 
            }
        }
        
        return sol[n];
    }
};
好的,我来解答你的问题。 对于这个问题,我们可以按照以下步骤来解决: 步骤1:构建二叉搜索树 我们可以使用给定的数据元素来构建一棵二叉搜索树,具体构建方法可以参考二叉搜索树的构建方法。 步骤2:遍历二叉搜索树 同样按照二叉搜索树的遍历方法,对构建好的二叉搜索树进行遍历,可选择前序遍历、中序遍历或后序遍历。 步骤3:转换为双链表 对于二叉搜索树转换为双链表,我们可以使用中序遍历,按照从小到大的顺序将中的节点连接起来。具体实现方法如下: 1. 定义一个全局变量pre,用来记录上一个节点 2. 对于每个节点,先将其左子转换为双链表,然后将该节点与pre连接起来,更新pre为当前节点,最后将右子转换为双链表 3. 最后返回双链表的头节点(即最左侧的节点) 步骤4:打印双链表 按照双链表的结构,我们可以从头节点开始遍历,依次输出每个节点的值。 步骤5:按正反序输出双链表中的所有元素 对于双链表的正反序输出,我们可以定义两个指针,一个指向头节点,一个指向尾节点,然后分别从头尾开始遍历输出即可。 下面是示例代码,你可以参考一下: ```python # 定义二叉节点 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 构建二叉搜索树 def buildBST(nums): if not nums: return None mid = len(nums) // 2 root = TreeNode(nums[mid]) root.left = buildBST(nums[:mid]) root.right = buildBST(nums[mid+1:]) return root # 中序遍历将二叉搜索树转换为双链表 def convertBSTtoDLL(root): global pre pre = None def inorder(root): nonlocal pre if not root: return None inorder(root.left) if pre: pre.right = root root.left = pre pre = root inorder(root.right) inorder(root) while root.left: root = root.left return root # 打印二叉 def printTree(root): if not root: return None print(root.val) printTree(root.left) printTree(root.right) # 打印双链表 def printDLL(head): while head: print(head.val) head = head.right # 按正序输出双链表 def printDLLForward(head): while head: print(head.val) head = head.right # 按反序输出双链表 def printDLLBackward(head): while head.right: head = head.right while head: print(head.val) head = head.left # 测试代码 nums = [1, 2, 3, 4, 5, 6, 7] root = buildBST(nums) print("打印二叉:") printTree(root) head = convertBSTtoDLL(root) print("打印双链表:") printDLL(head) print("按正序输出双链表:") printDLLForward(head) print("按反序输出双链表:") printDLLBackward(head) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值