dlib 人脸 识别函数

详细操作,见dlib 官网提供示例.

std::vector<matrix<rgb_pixel>> faces;
for (auto face : detector(img))
{
        auto shape = sp(img, face);
        matrix<rgb_pixel> face_chip;
        extract_image_chip(img, get_face_chip_details(shape,150,0.25), face_chip);
        faces.push_back(move(face_chip));
        // Also put some boxes on the faces so we can see that the detector is finding
        // them.
        win.add_overlay(face);
}

if (faces.size() == 0)
{
        cout << "No faces found in image!" << endl;
        return 1;
}

在这 提供 dlib 示例地址。想必大家都可以找到...

dnn sample

在人脸对齐后,我们将图像 送往  网络..   

std::vector<matrix<float,0,1>> face_descriptors = net(faces);

接下来 ,来解释参数:

1.  net  ( 这就是  定义的  网络结构),至于怎么定义的。这就不贴了。

2. face_descriptos[0]   这个其实就是  128D 的向量          [0,1]

3.注意  get_face_chip_details()  里面,后面 的两个参数...

4.有点疑问就是 ,在 对齐的 函数那里, 图像用的是array2d   结构,   而这里  是 matrix ,

不过没有 关系,可以转换。  <---  mat (arrary2d) 就可以了..

 

要知道,得到 128D 的向量值,在 硬件Rk 3368 上,花了 将近    6 s ..  我的天,,  无法想象...

后面要 优化??  不会来真的吧??   那就让 她来吧...  

 

后面 来点 真的:

if (length(face_descriptors[i]-face_descriptors[j]) < 0.6)

在这里判断 小于 0.6 ,(这是什么意思??欧式距离 ?  能不能理解 这个0.6 ? 越相似,这个值越小 )

 

写到这里,越来越无感了,还要继续嘛。come on... 

 

后期建议:

1.为什么 在 人脸的时候,没有 名字输入??(可以这么理解吧。我们输入一张图,在图中 搜索到 一张人脸,  要是没搜索到人脸 还好,要是有人脸的话,我要注册,  注册的名字,是不是 要上层  给,也就是传进来 我  来  处理??  或许 我 ....)

 

2.    为什么   要    把  所有 人脸框   ,( 一张图中   all    face_rect   , 来存入一个 数据结构)。

这样  只对   判断(一张图)  有 几个人 有 便利。其他 ??

暂时 还没  想到 ....

3 .    还是  关于 人脸 与 名字的  关联 问题,  人脸的 存取。 后期 再 考虑。。

我 想 dlib  后期如果  更新的话。应该这些。我 刚刚  提到的。这些...

还有  速度 当然会 更快...模型,内存会更少...  这是 趋势... 

 

 

---->

好了,今天的   更新  就到这里了,有机会下次  在见~~ 

 

OpenCV是一个开源的计算机视觉库,它提供了很多用于图像处理和模式识别的功能。而Dlib是一个基于C++的机器学习库,主要用于人脸检测和人脸识别任务。 在使用OpenCV进行人脸检测时,我们可以使用Haar特征分类器或基于神经网络的深度学习模型。Haar特征分类器使用像素值的差值来检测人脸,它可以通过训练来识别人脸的不同部分,例如眼睛、鼻子和嘴巴等。 而Dlib库提供了一个名为dlib.get_frontal_face_detector()的方法,可以用于检测图像中的人脸。它使用的是基于HOG(方向梯度直方图)特征和级联分类器的方法,可以在不同的角度和尺度下准确地检测人脸。 当我们想要将OpenCV和Dlib结合起来进行人脸识别时,我们可以使用Dlib提供的人脸检测器检测图像中的人脸,然后使用OpenCV进行图像处理和特征提取,最后使用Dlib人脸识别模型对人脸进行识别。 在这个过程中,我们可以使用OpenCV的函数来加载和处理图像,然后使用Dlib的检测器来检测图像中的人脸,接着使用Dlib人脸识别模型来比对和识别人脸。 综上所述,OpenCV和Dlib结合使用可以实现人脸检测和人脸识别的功能。OpenCV提供了图像处理和特征提取的功能,而Dlib提供了准确的人脸检测和人脸识别模型。这种结合可以在人脸识别人脸验证和人脸表情分析等领域发挥重要作用。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Teleger

你的支持是我前进的方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值