优化的LSSVM在短期风电功率预测中的应用

一、摘要

        针对风力数据的非线性波动特性,本研究设计了一种基于EEMD-WOA-LSSVM模型的新型预测方法。首先,收集官庄瑞风风电场的风速和风电功率数据,并对数据进行可视化定性分析,进而计算数据的描述性分析指标。通过对指标的分析发现风电功率存在波动较大的问题,因此引入集合经验模态分解(EEMD)算法有效地解决风电功率不稳定的问题。在此基础上构建出最小二乘支持向量机(LSSVM)预测模型,对预测结果进行分析可以发现,由于风电功率数据变化较大,LSSVM模型参数确定存在较大的主观性,于是研究基于鲸鱼优化算法(WOA),以模型输出预测值和真实值的均方误差(MSE)作为适应度函数,对参数进行寻优。经过WOA优化后的预测模型可以摆脱传统LSSVM模型中参数选择的主观性的约束,同时EEMD-WOA-LSSVM的结合构建出了一种解决风电功率数据波动较大问题的预测模型。另外,本研究选择RMSE、MAE、MAPE作为评价指标,对模型预测精度进行了横向和纵向对比分析。通过研究发现,EEMD-WOA-LSSVM模型预测精度较高,同时为了增强总体设计的交互性,设计了基于GUIDE短期风电功率预测GUI界面。

二、研究意义

       针对于风力发电进行研究可以发现目前随着国内外化石能源等传统能源不断消耗,风力发电势必会在未来的能源领域扮演起重要的作用,但是目前结合国内的大型风力发电场的相关情况和数据来看,风力资源存在着变化快、波动大、难以预测等难点问题,由于波动大,因此对于一个完备的风电场来看,由于风资源波动大,势必导致在整体后续风力发电的过程中会出现功率过大或者功率国小的情况,无论对电场设备还是并网设备来看都会产生较大的影响,因此对风力资源进行规律探索,构建出一个合理的风力资源模型,通过模型对风速、风电功率等变量进行预测,通过预测了解风电功率变化规律为后续风电及其相应的设备选型提出指导性的意见。

       目前随着计算设备和计算能力的不断发展,关于风电功率的预测研究也越来越多,因此针对于风电功率预测来看,通过合理的数学模型预测风电功率变化具有重要的现实意义。

三、研究内容

       以优化的LSSVM在短期风电功率预测中的应用为研究对象,重点研究如何通过优化的LSSVM算法提高风电功率预测的准确性和稳定性,对风电功率曲线进行可视化分析后可以发现,由于风力本身的特点,因此会出现波动较大的问题,因此选择EEMD对风电功率数据进行分解,同时为了排除LSSVM模型参数选择的主观性,基于鲸鱼优化算法对模型进行优化,通过算法相互结合构建出一个预测精度较高的风电功率预测模型。为达到这一目标,本文将从以下四个方面进行研究:

       (1)研究短期风电功率预测中的关键问题与难点,分析其特点和规律。

       (2)综述LSSVM算法的理论基础、研究现状和发展趋势,分析其在短期风电功率预测中的应用前景和优势。

       (3)通过实验验证和比较分析,探究用LSSVM算法对短期风电功率进行预测的可行性、准确性和效率。

       (4)提出优化的LSSVM算法在短期风电功率预测中的具体实施方案,基于实验数据进行验证,并对应用效果进行评价。

总体训练预测流程见下图

图1 总体预测流程

四、实现流程

4.1 风速和风电功率转换

风力发电场的输出性能的描述性资料主要有风速资料核风功率资料。由于受气象因素(如天气)及地理位置(如地形)等因素的影响,各区域风电场的随机风速分布概率和模式存在较大差异。研究者通过调查得出了风功率与风速两者间的一种函数转化关系,这种转化关系是使用风速资料进行多风电场相依性和随机性的依据。一般情况下,将风电场中的风功率数据P_wind与风速数据ν_wind之间的转化关系界定为:

4.2 EEMD-WOA-LSSVE预测模型

4.2.1 经验模态分解

经验模态分解(empirical mode decomposition,EMD)技术是近年来发展起来的一种新型技术[10],由20世纪90年代,Huang等人通过对小波变换方法与窗口傅里叶变换方法的改进提出[19]。EMD是一种自适应的分解方法,它可以不依靠主观经验,而是根据数据自身特征来进行自我确定IMF分量的数量,从而避免了因人为因素而造成的的模态混叠与分解不完全等问题。用于对不稳定的非线性信号进行平稳性分析。这种新算法适用于处理非线性不稳定信号,且在理论上可以用于任意非平稳信号。

经验模态分解(Empirical Mode Decomposition,EMD)是一种信号处理方法,用于将复杂的非线性和非平稳信号分解为多个本质模态函数(Intrinsic Mode Function,IMF)的叠加。其研究意义主要体现在以下几个方面:

信号分析与处理:EMD可以将复杂的非线性和非平稳信号分解为多个IMF,每个IMF代表了不同频率范围内的局部振动模式。这种分解方式有助于对信号进行更深入的分析和处理。

特征提取与识别:EMD分解后得到的IMF可以作为信号的特征向量,用于信号的分类、识别和模式识别等应用。例如,在医学领域中,可以利用EMD对心电图等生物信号进行分析和诊断。

时间序列预测:EMD分解可以将时间序列分解为多个IMF和一个残差项,每个IMF都具有自己的周期性和趋势性。这些IMF可以用于建立时间序列的模型,进行未来趋势的预测。

数据压缩与降维:EMD分解可以将信号分解为多个IMF和一个残差项,其中每个IMF都是相对独立的信号成分。这种分解方式可以用于数据压缩和降维,减少存储和计算量。

4.2.2 集合经验模态分解

EMD理论虽然在很多领域中得到广泛应用,但在实际操作中,由于观测到的风能信号经常含有干扰的白噪声,EMD分析数据时常常会导致错误的IMF分量出现,并且很容易发生波形混叠现象,模态混叠会对各IMF之间正交性、信号重构以及模态分量的物理意义造成极大的不良影响。导致不能得到更准确的风功率子序列。优化后的集合经验模态分解(EEMD)可以很好地减少波形混叠带来的干扰。具体做法是:

(1)将一组符合正态分布的白噪音数据与风功率信号相结合,构成一组新的风功率数据,其中,白噪音的振幅是α,标准偏差是ε。

(2)利用经验模态分解EMD对新获得的风功率数据进行分析,将其分解成 n个IMF分量cit和一个残差分量r。

(3)将前面两个步骤重复 r次,每重复一次都中添加一个振幅大小不同的白噪声,然后将 重复r次后所得的IMF分量进行相加,计算出平均值就是输入数据的 IMF分量。

4.2.3 模型实现流程

5 超短期风电功率预测实证

5.1 数据选取与描述

数据集来源于官庄瑞风风电场。该数据集包含了短期预测功率、实测风速、实际功率和超短期预测功率这几个关键变量。短期预测功率是风电场根据过去的观测和模型计算得出的功率预测值,用于预测接下来几小时内的风电场功率。实测风速是通过风速测量设备在风电场中实时测量获得的风速值,以米/秒为单位。实际功率是官庄瑞风风电场在相应时间点实际产生的风电功率值,以兆瓦为单位。而超短期预测功率是利用实测风速和其他相关参数,通过优化的LSSVM模型进行预测得到的功率预测值,用于预测接下来几分钟内的风电场功率。这些数据将被用于进行《优化的LSSVM在短期风电功率预测中的应用》的实证分析。

特征变量包括短期预测功率和实测风速,其中短期预测功率是风电场根据过去的观测和模型计算得出的短期功率预测值,以兆瓦(MW)为单位;实测风速是在官庄瑞风风电场实际测量到的风速值,以米/秒(m/s)为单位。

目标变量包括实际功率和超短期预测功率,其中实际功率是官庄瑞风风电场在相应时间点实际产生的风电功率值,以兆瓦(MW)为单位;超短期预测功率是基于实测风速和其他相关参数,使用优化的LSSVM模型进行预测得到的超短期功率预测值,同样以兆瓦(MW)为单位。

这些特征和目标变量将被用于进行优化的LSSVM在短期风电功率预测中的应用实证分析。通过分析短期预测功率与实测风速的关系,以及利用LSSVM模型进行超短期预测,我们可以评估该模型在风电场中的实际应用效果,并为风电场的运行和管理提供决策支持。

本研究选择了第二季度的三个月(4月、5月和6月)进行实证研究。为了研究的完整性,在每个月份选择了1号至月末(30号、31号)的实际风速数据进行分析。使用了15分钟的时间间隔和70米的测风塔高度,总共收集了8736个数据点。训练集和测试集按照7:3的比例进行分配,则其中6116个用作训练集,2620个用作测试集。通过绘制图表展示了原始风速数据的变化趋势和统计描述,结果显示风速序列具有不平稳、随机性和非线性的特点。

a) 4月实测风速序列

a) 4月实测风速序列

b) 5月实测风速序列

c) 6月实测风速序列

图 5-1 实测风速数据变化趋势

表 5-1 实测风速数据统计信息

时间段

 最小值 (m/s)

 最大值 (m/s)

 平均值 (m/s)

标准差

偏度

峰度

2021.04.01-2021.04.30

0.15

13.55

5.07

2.65

0.75

-0.040

2021.05.01-2021.05.31

0.69

13.98

6.32

2.70

0.59

-0.199

2021.06.01-2021.06.30

2.30

12.39

5.52

1.76

0.41

-0.720

在图5-1中对4、5和6月进行定性分析来看,风速的变化呈现出明显的非周期变化规律,且有较大的波动变化,波动范围从0.15m/s到13.98m/s。结合表5-1中可以发现,对于不同的时间周期最小值呈现出较大差异,其中4月份最小值仅为0.15m/s,6月份最小值为2.30m/s,而最大值差距较小,平均值较为稳定,结合标准差分析来看,其中4月份和5月份标准差分别为2.65和2.70,6月份标准差较小为1.76,即表明分布较为稳定。

基于这些关键点的研究结果可以得知,预测风电功率必须综合考虑风速序列的非平稳、不确定和非线性特性。

5.2 功率预测

5.2.1 原始数据分解

从图4-1可以看出,在各种因素的作用下,所采集到的风力信号是复杂的、不稳定的、不规律的,若直接对原始风力序列进行预报,则会导致某些重要的信息被掩盖而不能被充分地使用。该算法可以在保持原有信号的基础上对其进行预处理,并对其进行降噪,从而得到一定频段的稳定序列。为增加预报准确率,减少预报困难,同时考虑到风速信息本来是一个典型的非平稳的信号,因此本研究首先采用EEMD对风电数据进行模态分解,优化参数值r =100,α =0.2。针对性选择6月风功率数据进行分析说明

在matlab开发环境中,对2021年6月份风速数据进行可视化后,考虑到后续运算设计的需要,将风速数据转换为mat文件,方便后续数据读取,对风速数据进行EEMD分解,分解结果如下:

图 5-2 原始风速EEMD分解

在图5-2中可以观察发现,通过EEMD分解将风速分解为了11个IMF分量(IMF1~IMF11)和1个残差分量。对比与原始的风速数据和分解结果,以及通过EEMD分量与IMF11进行对比来看,放大图如图5-3所示: 

图 5-3 原始风速EEMD分解 

在图5-3中可以明显发现通过EEMD对风速数据进行分解后的IMF分量与未进行EEMD分解的风功率曲线相比,其波动范围小、平稳性好,也能直观体现IMF分量由高频到低频的特。 

5.2.2 LSSVM预测

对原始的风速数据进行分解后,考虑到后续数据计算的需要,首先对风速数据进行转换,将风速数据转换为短期的风功率数据,便于后续的研究,通过转换后,基于LSSVM对短期内的风功率数据进行预测,同时结合数据采样周期来看,对于风速数据的采集每隔15分钟进行采集。为了预测数据具有较好的效果,预测时间窗口长度设定为24,同时以样本集的70%作为训练样本,30%作为测试样本用于验证样本本身的预测精度。具体预测效果如下图5-4所示:

图5-4 风功率LSSVM预测

5.2.3 EEMD-LSSVM预测 

基于传统的LSSVM对功率数据进行预测,以及实际风功率数据变化中的波动范围较大的特点,结合4.2.1中的EEMD分解来看,通过EEMD分解可以将原来波动较大的趋势分解,其波动也进行了相应的分解。此外,考虑使用LSSVM对分解后的向量进行单独预测,再将预测后的向量进行合成,观察其预测效果,具体如5-5所示:

图5-5 风功率LSSVM预测 

从图5-5可以看出通过EEMD分解风速序列建立的LSSVM模型可以有效避免波形混叠的发生,从而得到更稳定的结果序列,增加了预测的准确度。

5.2.4 WOA-LSSVM预测 

考虑到在传统的LSSVM对风功率进行预测时,对于参数的选择具有较强的主观意识,为了摆脱参数选择的主观因素,选择鲸鱼算法对LSSVM网络进行优化,主要对gamma和sigma两个参数进行优化,其中gamma参数主要控制模型的复杂程度,sigma主要控制LSSVM网络的高斯核函数的宽度,显然在实际的处理过程中,针对于不同的数据集采取不同的参数势必会提高整体的预测精度,但是针对于LSSVM针对于风功率进行预测时,选择鲸鱼算法对参数进行寻优。

首先,定义一个适应度函数来评估LSSVM的性能,通常可以选择均方根误差(MSE)指标作为适应度函数。

初始化一组随机的鲸鱼个体,并将它们视为潜在的最优解。

在每个迭代中,计算每个鲸鱼个体的适应度值,并更新当前最优解。

根据当前最优解,通过三种基本操作来更新鲸鱼个体的位置和速度:螺旋运动、泡沫爆炸和尾部抽打。这些操作可以使鲸鱼个体在搜索空间中进行局部探索和全局探索。

重复执行步骤3和4,直到满足终止条件为止。对WOA算法其适应度曲线为:

图5-6 WOA适应度曲线

通过迭代优化后基于可以最优均方根误差为4.1413,优化后的两个参数分别为0.3234和0.0901。基于优化后的LSSVM结构对风功率进行预测,如图5-7所示:

图5-7 WOA-LSSVM预测

5.2.5 EEMD-WOA-LSSVM预测 

结合前述小节中的问题来看,首先基于EEMD分解可以有效解决功率波动较大的问题,WOA算法的引入可以摆脱LSSVM网络构建参数选择的主观性,将WOA和EEMD算法进行结合,首先对输入的数据进行EEMD分解,将分解后的每一个向量基于WOA算法寻求合适的LSSVM网络参数,通过LSSVM网络对其每一个分量进行预测,最终将其合成,具体预测效果如下图4-8所示:

图5-8 EEMD-WOA-LSSVM预测 

 5.3 模型评价

在章节5.2中基于LSSVM、EEMD-LSSVM、WOA-LSSVEM、EED-WOA-LSSVM对功率数据进行了预测,通过传统单一的定性分析显然不能评价模型的优劣性,因此选择RMSE、MAE和MAPE三个指标对测试样本预测值和真实值进行分析,通过指标分析评价模型的准确率,具体优化结果如图5-9所示:

图5-9 预测分析

在图4-7中可以直观观察到三种算法的预测对比,以RMSE、MAE、MAPE和运行时间四个维度评价四个预测模型,具体表格如下表5-2所示:

表 5-2 误差分析

预测模型

RMSE

MAE

MAPE(%)

运行时间(s)

LSSVM

4.1413

2.9651

4.6641

0.1656

WOA-LSSVM

1.926

1.0519

1.713

0.1528

EEMD-LSSVM

5.2775

4.0769

5.9925

2.5824

EEMD-WOA-LSSVM

1.0262

0.7965

1.1395

3.1535

在表5-2中结合四个模型预测精度来看,显然EEMD-WOA-LSSVE预测模型精度好,RMSE、MAE和MAPE值均为最小,分别为1.0262,0.7695,1.1395,对比于传统的LSSVM网络来看,明显优化效果较好,其实WOA-LSSVM预测效果较好,结合对比来看,EEMD-LSSVEM预测效果差于传统的LSSVM,这是由于将功率数据通过EEMD数据进行分解后,由于LSSVM对于不同的输入信号需要确定不同的参数值,显然在该模型中,将分解后的信号通过固定参数的LSSVM模型进行预测,再将其进行合成,在过程中出现了明显的误差积累,因此预测效果较传统的LSSVM预测效果差,虽然EEMD分解可以有效解决功率信号波动较大的问题,但是由于其将原来单一的信号分解为了12个IMF信号,分别对IMF信号进行预测,再将预测后的信号进行合成,因此程序运行时间较长,因此可以发现就预测精度来看,EEMD-WOA-LSSVM即可以解决风功率问题中存在的波动较大的问题,同时预测精度较高,但是存在运行时间较长的问题,这是由于在实际的运算中信号分解与重构占据了较多的时间。

 5.4 GUI设计

在针对于短时风电功率预测模型的设计中,在本次设计中针对于LSSVM、WOA-LSSVM、EEMD-LSSVM和EEMD-WOA-LSSVM四种模型进行了对比,代码较为复杂,使用者需要通过脚本文件,逐个对模型进行实现,因此出于增强用户交互性的需求,设计GUI界面增强代码的交互性。

设计中的风电给功率预测GUI设计基于GUIDE,GUIDE为Matlab开发环境中集成的一个开发工具,通过按钮等控件的调用可以将复杂的代码放置于控件的后台回调中,用户基于GUIDE不需要理解复杂的代码,即可得到想要的功能。

在本次模型的设计中可以发现,基于四种模型预测实现了对风电功率的预测,具体设计GUI界面如下图5-10所示:

图5-10 GUI界面

具体运行界面如下图5-11所示:

在图5-10中可以发现通过GUIDE界面的设计用户不需要去单独点击每一个单独的脚本运行按钮,通过GUIDE将复杂的代码集成到了一个界面中,通过GUI界面的设计用户不需要去对复杂的代码进行操作,只需要在GUI界面上点击相应的按钮,通过相应的按钮即可出现实现相应的预测模型通过GUI的设计进一步增强了代码的交互性。

同时传统的脚本对预测模型进行构建时,每一个预测模型都是单独独立的,用户不能直观对比四种不同的模型的预测效果,通过GUI设计,用户可以直接在界面上观察到四种不同预测模型的对比效果。

6 总结

 基于Matlab开发环境,对官庄瑞风电场的风电功率数据进行了预测,首先基于EEMD分解,通过EEMD分解将原始的风电功率数据分解为了12个IMFi信号,对比于分解后的信号和原始信号来看,分解后的信号明显波形性变小,基于传统的LSSVM对风电功率数据进行了预测,考虑到在实际预测过程中针对于不同的数据集显然需要不同的模型参数,基于WOA即鲸鱼优化算法对LSSVM中的sigma和gamma参数进行了寻优,将模型输出值的MSE作为适应度函数,确定了参数的最优值,同时构建了EEMD-WOA-LSSVM预测模型,通过对四种预测模型的预测误差分析可以发现,对于四种模型来看,其中EEMD-WOA-LSSVM模型预测精度最高,解决了风电模型中波动较大的问题,EEMD-LSSVM模型预测精度较差,这是由于对风电功率信号进行分解后,由于本身LSSVM模型参数固定,导致后续在预测信号合成中出现了误差累积的情况,但是EEMD-WOA-LSSVM因为需要对每一个分量进行参数寻优,因此模型运算速度较慢。

代码下载:各位看官可扫码关注,私信文章题目即可。

  • 15
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值