Matlab-线性分类器

开发环境:

Matlab 2022a

实现内容

基于线性分类器,实现手写字符分别识别

部分实现代码

clear variables
clc
% 读取数据
load ('test_images.mat');
load ('test_labels.mat');
% 设定数据量
train_num = 1000;
test_num = 200;
% 临时变量以及各个感知器参数
j = 1;
lr = 0.01;%学习率
epoch = 50;%设定训练多少轮
number = [8,4];%要取的数字组合
% 提取数据中标签为任意组合的样本,共计200个
% 由于数据本身打乱过,因此可以直接取200个而不考虑样本不均衡问题
for i = 1:10000
    if test_labels1(i)==number(1)|| test_labels1(i)==number(2)
        data(:,:,j) = test_images(:,:,i);
        label(j) = test_labels1(i);%取相应标签
        j=j+1;
     if j>train_num+test_num
         break;
     end
    end
end
 
% 由于感知器输出结果仅为0、1,因此要将标签进行转换
% 本程序中,由于matlab计算不等式相对容易,因此没有对样本进行规范化
% 由于没有进行规范化,后面更新权值w需要借助标签,因此标签需要置-1和1 
for k = 1:train_num+test_num
    if label(k)==number(1)
        label(k)=-1;
    end
    if label(k)==number(2)
        label(k)=1;
    end
end

data_ = mat2vector(data,train_num+test_num);%矩阵转向量

实现结果截图:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智吾科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值