大/小端模式与位操作

文章目录

1. 大小端模式

2. 大端模式(Big-endian)

3. 小端模式(Little Endian)

4. 判断和转换大小端模式

5. 位操作

5.1 移位操作

5.2 取反操作

5.3 位与操作

5.4 位或操作

5.5 置位操作

5.6 清位操作


1. 大小端模式

大小端模式(Endianness)是指计算机系统中多字节数据的存储方式。不同的计算机系统可能采用不同的大小端模式来存储数据,这会影响到数据在内存中的排列顺序。

大小端模式的影响

  1. 数据交换: 在不同大小端模式的系统之间交换数据时,数据的解释方式会有所不同。如果不进行适当的转换,可能导致数据的错误解读。例如,一个32位整数在大端系统中为0x12345678,在小端系统中可能被解释为0x78563412。

  2. 文件格式: 某些文件格式在设计时会指定采用某种字节序。例如,网络协议通常使用大端模式,也称为"网络字节序"(Network Byte Order)。在解析这些文件或网络数据时,需要注意字节序的转换。

  3. 嵌入式系统: 在嵌入式系统开发中,嵌入式设备可能使用不同的处理器架构,不同架构可能采用不同的字节序。在与外设进行数据通信时,必须确保双方使用一致的字节序。

2. 大端模式(Big-endian)

大端模式是指数据的高字节存储在内存的低地址中,而数据的低字节存储在内存的高地址中。这种存储方式符合我们书写数字的习惯,即从高位到低位,从左到右存储。

例如,对于32位整数0x12345678:

  • 高字节(0x12)存储在低地址处
  • 低字节(0x78)存储在高地址处
地址数据
0x10000x12
0x10010x34
0x10020x56
0x10030x78

 

3. 小端模式(Little Endian)

小端模式是指数据的高字节存储在内存的高地址中,而数据的低字节存储在内存的低地址中。这种存储方式与大端模式相反。

例如,对于32位整数0x12345678:

  • 低字节(0x78)存储在低地址处
  • 高字节(0x12)存储在高地址处
地址数据
0x10000x78
0x10010x56
0x10020x34
0x10030x12

4. 判断和转换大小端模式

可以通过C语言代码来判断当前系统的大小端模式:

这段代码通过检查整数的最低字节是否存储在最低地址来判断系统的字节序。

#include <stdio.h>

int main() {
    unsigned int x = 0x12345678;
    char *c = (char*)&x;

    if (*c == 0x78) {
        printf("Little Endian\n");
    } else {
        printf("Big Endian\n");
    }

    return 0;
}

大小端模式转换

如果需要在大小端模式之间进行转换,可以使用如下方法:

这段代码实现了32位整数的字节顺序交换,可以用于大小端模式的转换。

#include <stdio.h>
#include <stdint.h>

// 交换字节顺序
uint32_t swap_endian(uint32_t val) {
    return ((val >> 24) & 0xff) |      // 移动最高字节到最低字节
           ((val << 8) & 0xff0000) |   // 移动次高字节到次低字节
           ((val >> 8) & 0xff00) |     // 移动次低字节到次高字节
           ((val << 24) & 0xff000000); // 移动最低字节到最高字节
}

int main() {
    uint32_t original = 0x12345678;
    uint32_t swapped = swap_endian(original);

    printf("Original: 0x%x\n", original);
    printf("Swapped: 0x%x\n", swapped);

    return 0;
}

5. 位操作

位操作是计算机中对二进制位进行直接操作的技术。在编程中,位操作能够高效地处理数据,通过操作特定位的值来实现一些特定的功能。位操作符直接对整数的二进制表示进行操作,因此通常比其他操作符快。

5.1 移位操作

移位操作通过移动一个数的二进制表示来实现乘法、除法、数据的快速处理等功能。移位操作分为左移和右移两种,分别用左移操作符(<<)和右移操作符(>>)表示。

示例代码

int a = 0x6; // 二进制是 0b0110
int b = a << 1; //左移操作
int c = a >> 1; //右移操作

左移操作符 << 将操作数的二进制表示向左移动指定的位数,右边补0。

  • a 的二进制表示: 0110
  • 左移一位:01101100
  • 转换为十六进制:11000xC

所以,b 的值为 0xC

右移操作符 >> 将操作数的二进制表示向右移动指定的位数,对于有符号整数,左边根据符号位补0或1,对于无符号整数,左边补0。

  • a 的二进制表示: 0110
  • 右移一位:01100011
  • 转换为十六进制:00110x3

所以,c 的值为 0x3

5.2 取反操作

取反操作是一种位操作,用来将一个数的二进制表示中的每一位取反,即把 0 变成 1,把 1 变成 0。在C语言中,取反操作使用 ~ 符号。

示例代码

int a = 0x6; // 二进制是 0b0110
int b = ~a;

取反操作符 ~ 将操作数的二进制表示中的每一位取反。

  • a 的二进制表示: 0110
  • 取反后:01101001
  • 转换为十六进制:10010x9

所以,b 的值为 0x9

5.3 位与操作

位与操作是一种位操作,用来将两个数的二进制表示中对应位置的位进行与运算。只有对应的两个二进制位都为 1 时,结果位才为 1,否则结果位为 0。在 C 语言中,位与操作使用 & 符号。

示例代码

int a = 0x6; // 二进制是 0b0110
int b = 0x7; // 二进制是 0b0111
int c = a & b;

位与操作符 & 将操作数的二进制表示中的每一位进行与运算。

  • a 的二进制表示: 0110
  • b 的二进制表示: 0111
  • 位与结果: 0110

运算如下:

  • 第1位:0 & 0 = 0
  • 第2位:1 & 1 = 1
  • 第3位:1 & 1 = 1
  • 第4位:0 & 1 = 0

所以,结果 c 的值为 0x6(十六进制),即 0b0110

5.4 位或操作

位或操作是一种位操作,用来将两个数的二进制表示中对应位置的位进行或运算。只要对应的两个二进制位中有一个为 1,结果位就为 1,否则结果位为 0。在 C 语言中,位或操作使用 | 符号。

int a = 0x6; // 二进制是 0b0110
int b = 0x7; // 二进制是 0b0111
int c = a | b;

位或操作符 | 将操作数的二进制表示中的每一位进行或运算。

  • a 的二进制表示: 0110
  • b 的二进制表示: 0111
  • 位或结果: 0111

运算如下:

  • 第1位:0 | 0 = 0
  • 第2位:1 | 1 = 1
  • 第3位:1 | 1 = 1
  • 第4位:0 | 1 = 1

所以,结果 c 的值为 0x7(十六进制),即 0b0111

5.5 置位操作

置位操作是一种常见的位操作,用来将某个变量的特定位设置为 1。在 C 语言中,可以使用位或运算符 | 和左移操作符 << 来实现置位操作。

int a = 0x6;  // 二进制是 0b0110
int a |= (1<<3);

这行代码使用了位或运算符 | 和左移操作符 << 来实现置位操作。

  • 1<<3:将 1 左移 3 位,结果是 0b1000(二进制),即十六进制的 0x8
  • a |= 0b1000:将 a0b1000 进行位或运算。

计算过程:

  • a 的二进制表示: 0110
  • 1<<3 的二进制表示: 1000
  • 位或结果: 1110

运算如下:

  • 第1位:0 | 0 = 0
  • 第2位:1 | 0 = 1
  • 第3位:1 | 0 = 1
  • 第4位:0 | 1 = 1

所以,结果 a 的值为 0xE(十六进制),即 0b1110

5.6 清位操作

清位操作是将某个变量的特定位清零的一种操作。通过使用位与运算符 & 和按位取反操作符 ~ 可以实现清位操作。

int a = 0x6;  // 二进制是 0b0110
int a &= ~(1<<2);

这行代码使用了位与运算符 & 和按位取反操作符 ~ 来实现清位操作。

  • 1<<2:将 1 左移 2 位,结果是 0b0100(二进制),即十六进制的 0x4
  • ~(1<<2):对 0b0100 进行按位取反,结果是 0b1011
  • a &= 0b1011:将 a0b1011 进行位与运算。

计算过程:

  • a 的二进制表示: 0110
  • ~(1<<2) 的二进制表示: 1011
  • 位与结果: 0010

运算如下:

  • 第1位:0 & 1 = 0
  • 第2位:1 & 0 = 0
  • 第3位:1 & 1 = 1
  • 第4位:0 & 1 = 0

所以,结果 a 的值为 0x2(十六进制),即 0b0010

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TENET-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值