
论文学习
文章平均质量分 93
不仅要读懂,还要学着人家怎么写~
红鲤鱼遇绿鲤鱼
只要思想不滑坡,办法总比困难多~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Continuous Batching 连续批处理
原始论文题目:Continuous Batching — ORCA: a distributed serving system for Transformer-based generative models关键词:Continuous Batching, iteration-level scheduling, selective batchingOrca系统又由几个关键组件组成:Endpoint,Scheduler,Execution Engine,Request Pool不同于那些通过多次迭代直到所原创 2025-01-27 17:19:40 · 1124 阅读 · 0 评论 -
yolov3 论文笔记
原始论文中废话太多,文章主要参考csdn以及知乎上等博主的优秀博文总结得到参考:https://blog.csdn.net/qq_37541097/article/details/81214953https://zhuanlan.zhihu.com/p/76802514https://zhuanlan.zhihu.com/p/337383661backboneyolo v3的backbone 使用的是darknet53,如下图:其中每个convolutional层是由 conv + bn +原创 2021-10-05 14:26:16 · 1357 阅读 · 0 评论 -
yolov2 论文笔记
摘要部分real-time object detection system that can detect over 9000 object categories.之所以叫yolo 9000 是因为可以检测9000个目标。Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accura原创 2021-09-21 13:44:33 · 512 阅读 · 0 评论 -
yolo v1论文笔记
yolov1参考这篇文章https://zhuanlan.zhihu.com/p/46691043摘要we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities.作者将目标检测问题变成一个回归问题,包括bounding boxes的计算和目标类别的概率。A single neural network predic原创 2021-09-09 10:11:18 · 382 阅读 · 0 评论 -
SSD 论文笔记
摘要We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location.原创 2021-09-02 16:11:35 · 899 阅读 · 0 评论 -
fpn 论文笔记
摘要Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper原创 2021-08-31 13:23:38 · 871 阅读 · 0 评论 -
resnet 论文笔记
摘要Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions w原创 2021-08-29 16:43:10 · 1127 阅读 · 0 评论