【必看】TensorFlow 2.4.0 候选版本发布

TensorFlow 2.4.0 候选版本发布,带来了Keras模型异步训练支持、tf.experimental.numpy模块、Ampere架构GPU的TF32支持、Keras Functional API重构等重大改进。Keras混合精度训练API稳定,TFLiteProfiler推出,同时更新了tf.data、tf.distribute和tf.lite的相关接口。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日,TensorFlow 2.4.0 候选版本最新发布,有哪些具体内容改进呢?赶紧一睹为快!

主要功能改进

  • tf.distribution 通过 tf.distribution.experimental.ParameterServerStrategy API 引入了对 Keras 模型异步训练实验性支持。更多细节请参见下文。
  • MultiWorkerMirroredStrategy 不再是一个实验性 API,现在已进入稳定版本。针对命令执行失败和其他错误进行了修复。请查看具体教程,了解如何使用 Keras 进行多任务并行训练
  • 对 tf.experimental.numpy 的新模块进行了实验性支持,此 API 不仅与 NumPy 兼容,更便于编写 TF 程序,可参阅详细指南了解更多信息,更多细节请参见下文。
  • 针对 Ampere 架构的 GPU 添加了 TensorFlow-32(简称TF32) 的支持,这是一种基于 Nvidia Ampere 的GPU模式,默认情况下将启用。
  • Keras Functional API 的内部重构已经完成,这次重构提高了构建 Functional 模型的可靠性、稳定性和性能。
  • Keras 混合精度训练的 API tf.keras.mixed_precision 已稳定,不再为实验性支持。这允许在训练过程中使用 16 位浮点数格式,在 GPU 上的性能提升高达 3 倍,在 TPU 的提升也高达 60 %。
  • TF Profiler 现在支持使用
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值