素数打表的两种方法总结和理解
- 方法及代码参考网络
- 注释中的解释为个人理解,可能存在问题,欢迎指出。
//素数打表
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
#define Max 10100000
int prime[Max];
bool visit[Max];
int ct; //计录已存的素数个数
void init_prime() {
//普通筛选法--埃拉托斯特尼筛法
/*
1.第一个循环里prime数组做标记作用。值为0表示素数,1表示合数。
2.先将所有数认为是素数(prime数组置0)
找到第一个素数(2),将以该素数为倍速的所有数标记为合数(i*(i+1) i*(i+2) ...)
3.继续遍历找到下一素数,重复2的步骤 ,直到完成Max内的筛选。
4.第二个循环用ct计数,将prime数组用以存放Max内所有素数。
*/
memset(prime, 0, sizeof(prime));
int e = sqrt((double)Max);
for (int i = 2; i <= e; i++) {
if (!prime[i])
for (int j = i * i; j <= Max; j += i)
prime[j] = 1;
}
ct = 0;
for (int i = 2; i <= Max; i++)
if (!prime[i])
prime[ct++] = i;
}
void init_prime2() {
//线性筛选法——欧拉筛法
/*
1.利用原理:合数可以拆成素数 * 另一数相乘,因此素数×任意数得到的数会是合数。
2.visit数组用以标记,初始化默认所有数为素数。prime数组用以存放Max内的素数
3.第一个数(2),将该数分别乘以prime数组中已知的素数,其乘积标记
为合数。
4.对于关键语句的解释:如果i本身是合数,那么i就可以拆开得到已知素数(记为k)
×另一数的乘积形式。那么由i×其他素数得到的那个合数,也可以拆成k × 另一
更大的数的乘积形式,那么就会重复标记,因此为了避免这种情况,如果i本身可拆,
那么就不再用它乘以后面的素数,这样就避免了重复标记。
*/
memset(visit, true, sizeof(visit));
ct = 0;
for (int i = 2; i <= Max; i++) {
if (visit[i]) prime[ct++] = i;
for (int j = 0; j < ct && i * prime[j] <= Max; j++) {
visit[i * prime[j]] = false;
if (!(i % prime[j])) break;//关键
}
}
}
int main() {
freopen("out.txt", "w", stdout);//输出到文件,Max过大时便于查看
init_prime2();
for (int i = 0; i < ct; i++)
cout << prime[i] << endl;
}
后记:
对于纯输出素数的题目来说,输出时可以先判断是否输出2, 然后从3开始将步长改为2,提高效率(N > 2 时, 偶数定不会是素数)
例如:
int main() {
int N;
init_prime();
while (~scanf("%d", &N) && N) {
if (N > 1) {
printf("2 ");
for (int i = 3; i <= N; i += 2)
if (!prime[i]) printf("%d ", i);
printf("\n");
}
}
}