局部加权线性回归(LWLR)

局部加权线性回归(LWLR)是一种解决线性回归欠拟合和多项式回归过拟合问题的方法。模型中权重根据预测点与样本点的距离动态调整,损失函数通过距离权重实现局部拟合。算法包括梯度下降和解析法,每次预测时会重新计算参数。虽然LWLR是非参数算法,每次预测需要所有训练数据,但其在某些情况下可能仍会出现欠拟合问题,并且在大数据集上计算效率较低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

局部加权线性回归(LWLR)

对于线性回归算法,容易出现欠拟合,而多项式回归又容易出现过拟合。因此出现了局部加权回归

模型

y(i)=θTx(i)

和线性回归的模型相同,但是对于每一个预测点, θ 都需要重新计算,并不是固定不变的。

损失函数

L(θ)=12Mi=1mwi(yiθTxi)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值