vs code 连接远程主机的docker容器

vs code 连接远程主机的docker容器:
连接远程主机后—》找到docker扩展—》在ssh:xxx中安装

### 配置 VSCode 远程连接带有 CUDA 的 Docker 容器 为了实现这一目标,需确保已按照指导完成必要的软件安装和配置工作[^1]。具体来说,这涉及到几个方面: #### 创建并启动带 CUDA 支持的 Docker 容器 创建容器时应指定 GPU 资源分配参数 `--gpus` 和端口映射 `-p 8022:22` 来允许外部访问 SSH 服务,并通过卷挂载选项 `-v` 将主机目录与容器内部共享以便于数据交换[^3]。 ```bash docker run -it --name cuda_dev_container --gpus all -p 8022:22 -v /local/path:/container/path pytorch/pytorch:latest-cuda-devel ``` #### 在容器内安装 SSH 服务 进入新创建的容器后,需要进一步设置 SSH 服务器以供远程登录使用。通常情况下,可以通过包管理工具如 apt-get 或 yum 来获取 openssh-server 并开启相应服务。 ```bash apt-get update && apt-get install -y openssh-server service ssh start ``` #### 设置 VSCode Remote-SSH 扩展 在本地计算机上打开 Visual Studio Code 应用程序,前往扩展市场搜索 "Remote - SSH" 插件并点击安装按钮。之后可通过命令面板 (Ctrl+Shift+P) 输入 “Remote-SSH: Connect to Host...”,输入之前设定好的 IP 地址或者域名加上用户名组合形式来建立连接[^2]。 #### 开始开发流程 一旦成功建立了到目标机器上的安全 Shell 会话,则可以在左侧活动栏中的“资源管理器”视图里找到对应的工作区文件夹;此时即可如同操作本机项目一样编辑、编译乃至运行基于 NVIDIA CUDA 架构的应用程序了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值