Paper
文章平均质量分 92
Terrence_Z
这个作者很懒,什么都没留下…
展开
-
ResNet-V2分析
ResNet-V2Introduction分析了在残差单元间的传播后,我们可以知道当我们用了恒等映射作为skip connection以及在addition之后做激活,信号在网络间的前向和后向传播可以直接从一个节点到另一个节点。在残差神经网络的传播过程中,节点间的信息传递也十分重要,V2就在skip-connection以及activation在残差单元的位置做了全面的比较,并且提出了一个新的改进模型。yl=h(xl)+F(xl,ωl)y_l = h(x_l) + F(x_l, \omega_l)y翻译 2021-07-26 15:19:07 · 1640 阅读 · 0 评论 -
ResNet分析
ResNetIntroduction深度卷积神经网络曾在图像分类领域做出了重大突破。深度网络可以吸收各种维度层次的特征,而这个特征的深度我们可以通过加深神经网络层数来得到。我们知道网络深度是一个非常重要的影响网络性能的因素。很多的图像领域的神经网络模型也都是基于比较深层次的网络结构的。但这样深层次的网络结构是否容易训练,容易学习样本分布呢?出现的问题大家应该也都知道,梯度爆炸和梯度消失的问题在深度学习中经常会出现,这极大的影响了我们训练的收敛性。 但是这个问题在一些中间层或预处理层添加一些标准翻译 2021-07-26 10:05:35 · 443 阅读 · 0 评论