二叉搜索树的定义
二叉搜索树(BST)是二叉树的一种特殊表示形式,它满足如下特性:
每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。
每个节点中的值必须小于(或等于)存储在其右子树中的任何值。
下面是一个二叉搜索树的例子:
像普通的二叉树一样,我们可以按照前序、中序和后序来遍历一个二叉搜索树。 但是值得注意的是,对于二叉搜索树,我们可以通过中序遍历得到一个递增的有序序列。因此,中序遍历是二叉搜索树中最常用的遍历方法。
解题思路
正如定义所说,使用中序遍历得到序列,在验证序列是否为递增。
题目描述
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
Golang代码
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func inorderTraversal(root *TreeNode) []int {
// 中序遍历二叉树返回序列
l := []int{}
if root == nil {
return l
}
if root.Left != nil {
l = append(l, inorderTraversal(root.Left)...)
}
l = append(l, root.Val)
if root.Right != nil {
l = append(l, inorderTraversal(root.Right)...)
}
return l
}
func isValidBST(root *TreeNode) bool {
//验证序列是否为升序
if root == nil {
return true
}
l := inorderTraversal(root)
for i := 0; i < len(l)-1; i++ {
if l[i+1] <= l[i] { //题干要求等于也算非升序
return false
}
}
return true
}