验证二叉搜索树

二叉搜索树的定义

二叉搜索树(BST)是二叉树的一种特殊表示形式,它满足如下特性:

每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。
每个节点中的值必须小于(或等于)存储在其右子树中的任何值。

下面是一个二叉搜索树的例子:
在这里插入图片描述
像普通的二叉树一样,我们可以按照前序、中序和后序来遍历一个二叉搜索树。 但是值得注意的是,对于二叉搜索树,我们可以通过中序遍历得到一个递增的有序序列。因此,中序遍历是二叉搜索树中最常用的遍历方法。

解题思路

正如定义所说,使用中序遍历得到序列,在验证序列是否为递增。

题目描述

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。

Golang代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) []int {
// 中序遍历二叉树返回序列
	l := []int{}
	if root == nil {
		return l
	}
	if root.Left != nil {
		l = append(l, inorderTraversal(root.Left)...)
	}
	l = append(l, root.Val)
	if root.Right != nil {
		l = append(l, inorderTraversal(root.Right)...)
	}
	return l
}
func isValidBST(root *TreeNode) bool {
//验证序列是否为升序
	if root == nil {
		return true
	}
	l := inorderTraversal(root)
	for i := 0; i < len(l)-1; i++ {
		if l[i+1] <= l[i] { //题干要求等于也算非升序
			return false
		}
	}
	return true
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值