结合大数据、物联网(IoT)、平台架构与设计重构大模型应用,需构建一个数据驱动、实时响应、弹性扩展的智能系统。以下从技术架构、数据流、核心模块设计三个维度展开:
一、整体架构设计
分层架构(基于云-边-端协同):
[物联网设备层] → [边缘计算层] → [大数据平台层] → [AI模型服务层] → [应用层]
- 物联网设备层(Endpoint)
设备类型:传感器、摄像头、工业控制器等
数据采集:
时序数据(温度/压力/振动等)
多媒体流(视频/音频)
结构化日志(设备状态)
协议支持:MQTT/CoAP(轻量级)、Modbus(工业协议)、HTTP/2(高清视频) - 边缘计算层(Edge)
功能定位:
本地化预处理:数据清洗、异常检测、特征提取
实时响应:基于轻量级模型(如TinyML)的边缘推理
流量削峰:缓存突发数据,平滑传输至云端
技术选型:
边缘网关:AWS IoT Greengrass、Azure IoT Edge
硬件加速:NVIDIA Jetson、Google Coral TPU - 大数据平台层(Cloud)
数据湖:
存储:对象存储(如S3、MinIO) + 分布式文件系统(HDFS)
格式:Parquet/ORC(列式存储)、Iceberg(流批一体表)
计算引擎:
批处理:Spark/Hive(历史数据分析)
流处理:Flink/Kafka Streams(实时特征工程)
交互式查询:Presto/Trino(多数据源联邦查询) - AI模型服务层
模型训练:
离线训练:基于大数据的预训练(如使用Spark MLlib + Horovod分布式训练)
在线学习:通过物联网反馈数据实现增量学习(如使用Ray Serve + Redis流式更新)
推理服务:
模型部署:TensorFlow Serving、TorchServe、KServe(Kubernetes原生)
优化技术:量化(INT8)、蒸馏(Distilla

最低0.47元/天 解锁文章
、平台架构与设计重构大模型应用&spm=1001.2101.3001.5002&articleId=147773144&d=1&t=3&u=7b9db305b96848d4833e22b85234fa4d)
1242

被折叠的 条评论
为什么被折叠?



