Lang*生态系统多个专业框架及他们的作用

LangChain 生态系统已发展出多个专业框架,针对AI应用开发的不同环节提供解决方案。以下是核心框架及其作用详解:


一、核心框架矩阵

框架名称 定位 核心功能 适用场景
LangChain Core 基础编排框架 组件化AI链(Chain)设计,集成LLM/工具/数据源 快速构建简单AI流程
LangGraph 有状态工作流引擎 循环/分支/多Agent协作的复杂流程编排 长会话Agent、自动化决策系统
LangServe 部署工具包 将LangChain对象转为REST API 生产环境API服务化
LangSmith 全生命周期监控平台 调试+测试+分析+部署监控一体化 企业级AI应用运维
LangChain.js 浏览器/Node.js运行时 在Web端直接运行AI链 浏览器插件、边缘计算场景

二、框架深度解析

1. LangChain Core:AI应用的乐高积木
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 构建基础链
prompt = ChatPromptTemplate.from_template("解释{term}的技术原理")
model = ChatOpenAI(model="gpt-4-turbo")
chain = prompt | model | output_parser

# 执行
chain.invoke({
   "term": "RAG"})  # 输出RAG技术解析

核心价值

  • 标准化组件:LLMToolsMemory等即插即用
  • 链式组合:通过管道符|连接组件(如prompt→model→output_parser

2. LangGraph:复杂逻辑的中央处理器
graph LR
    A[用户输入] --> B{是否需要工具?}
    B -->|是| C[执行工具]
    B -->|否| D[直接回答]
    C --> E[生成中间结果]
    E --> D
    D --> F[输出]

革命性特性

  • 状态持久化:自动维护跨节点状态(如会话历史)
  • 动态路由:基于LLM输出决定下一步流程
  • 多Agent协同:实现Agent团队分工协作
# 构建带循环的工作流
graph.add_node("generate", llm_node)
graph.add_conditional_edges(
    "generate",
    lambda x: "continue" if "【未完】" in x else "end"
)

3. LangServe:一键部署生产API
langchain serve deploy my_chain --name=tech-assistant

部署效果

# 自动生成API端点
POST /invoke 
{
   
  "input": {
   "term": "Transformer架构"}
}

核心功能

  • 自动生成OpenAPI文档
  • 内置身份验证(JWT/OAuth)
  • 支持批处理接口

4. LangSmith:AI应用的DevOps平台

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
核心模块

模块 功能
轨迹追踪 可视化每个组件的输入/输出
测试评估 批量运行+自动评分(准确性/延迟/成本)
监控告警 生产环境异常实时报警
数据管理 版本化数据集管理

5. LangChain.js:边缘智能利器
// 在浏览器中运行RAG
import {
    ChatOpenAI } from "langchain/chat_models/openai";
import {
    RetrievalQAChain } from "langchain/chains";

const chain = RetrievalQAChain.fromLLM(model, vectorStore);
button.onclick = async () => {
   
  const res = await chain.call({
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值