params文件保存的是预训练好的模型,那它有什么用?
当然是节省了训练的过程,你也不需要有样本数据,就可以实现特定的功能了。
这些模型可用于预测,特征提取和微调。
当然,结果的好坏取决于生成params文件的训练。
相关:
keras Using Pre-Trained Models
Transfer learning & The art of using Pre-trained Models in Deep Learning
本文探讨了params文件在深度学习项目中的关键作用,包括节省训练时间、无需样本数据即可实现功能。params文件可用于预测、特征提取和模型微调,其效果取决于原始训练的质量。文章还提及了Keras和MXNet等框架中使用预训练模型的方法。
params文件保存的是预训练好的模型,那它有什么用?
当然是节省了训练的过程,你也不需要有样本数据,就可以实现特定的功能了。
这些模型可用于预测,特征提取和微调。
当然,结果的好坏取决于生成params文件的训练。
相关:
keras Using Pre-Trained Models
Transfer learning & The art of using Pre-trained Models in Deep Learning
您可能感兴趣的与本文相关的镜像
Llama Factory
LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调
629
397
1965
1734
1034

被折叠的 条评论
为什么被折叠?