【comfyui教程】comfyui学习日记03-基础原理,节点报错解决方法!_comfyui节点冲突怎么解决

大家好这里是阿道夫!!

前言

学comfyui是有难度的,正因为难,所以当我们解决难题后,收获的成就感也是巨大的。

前面的话

10月22日凌晨1点56分,彼时天气阴冷沉闷,连日来没有搞定节点飘红问题让这沉闷更甚几分。

无瑕多想,将新的报错信息复制给gpt,几分钟后重启comfyui。终于,这次不再爆红。

回顾这次的学习,comfyui确实有难度,中间几次烦闷不堪,又不甘心放弃,好在最终啃了下来,那一刻的爽感也无与伦比,天气虽还是沉闷依旧,但我知道阴云之上天朗气清,满天繁星。

那我们怎样解决难题?

在学习comfyui的过程中我们会遇到各种各样的问题,一开始怎样安装啦,如何云端部署啦,理解各种新名词新概念等等。每个阶段各有不同,有先有后,有主有次。当我们抓住那个主要矛盾,其他问题就会迎刃而解。对于我来说,上周学习遇到的难点先后有两。

一是基本原理;二是导入工作流后如何解决节点报错飘红的问题。

本次所用工作流,模型等资料均附文末。

基本原理

1. comfyui,webui,Stable Diffusion三者什么关系?

在comfyui,webui,Stable Diffusion三者中;

  • Stable Diffusion 提供图像生成的“底层引擎”。

  • WebUI 提供了简单的图形界面,和拓展插件在固定的框架内可以直接上手生成图像或视频。

  • ComfyUI 本质上也是一种图形界面GUI,只是提供了更自由的节点式编辑方式,可以进行更复杂的操作和自定义工作流。

webui能做的comfyui都能做,webui不能做的comfyui也能做,二者的底层引擎都是Stable Diffusion(文后简称sd)。

我们来看经典的1girl工作流由哪些部分组成.

最左侧是checkpoint模型加载器,连接着正负两个clip文本编辑器

然后进入了一个ksampler采样器,在采样器的输入节点还连接了空latent

再往后是一个VAE解码器,最后是保存图片。

那每部分具体是什么作用呢?

为什么要这样连接?

我们来看sd原理图

我一开始学webui时看得头大,后来上手用得多了,

现在再回过头结合comfyui和注释来理解其基本原理就容易多了。

我们经过抽象概括,可以看出原理图经过三个部分:条件输入,潜在空间和像素空间

步骤1.条件输入:可以将文本和图像等信息作为条件,经过输入调节将输入的条件转换成潜空间可以识别的内容。

对应到comfyui可以理解为将大模型和提示词文本都作为步骤一的条件输入,而clip 文本编码器既可以输入文本,又是文本编码器,将输入的提示词转化成潜空间能识别的内容。

步骤2.潜在空间:从输入调节输出内容进入到潜空间,在U-Net进行一个去噪过程,U-Net可以理解为首先生成一张完全是噪点的图片,经过交叉注意力层逐渐降噪。

对应到comfyui步骤2就是在ksampler采样器中使用不同的采样方法和步数降噪图片。这个过程有点像艺术家米开朗基罗一样去掉多余的材料,才能获得完美的雕塑作品《大卫》。

步骤3.像素空间:通过vae解码器将生成的数据还原到像素空间,因为从潜空间直接生成的数据是不能直接查看的,需要还原成像素组成的图片才行。

对应到comfyui中就是ksampler采样器连接到vae解码器上,解码器解码输出图像。

2. 总结

文生图的过程就是我们给了它一个空画布

我们可以调节出图大小,根据选择各个基础底模,也有不同的生图尺寸。

因为每个模型训练的图片尺寸不同,所以各个模型都有最佳的出图分辨率。

为什么只能调节大小呢?因为其他的东西我们看不到。

进到潜空间采样,通过我们设定的参数调节CFG,采样器,调度器等逐渐降噪处理

把之前满是噪点的画布,通过去噪的过程处理成清晰可见的图像。

就像雕刻一样我们需要把多余的材料去除,才能获得成型的作品。

由于它是在潜空间处理的,即便到了Latent这一步也看不见,需要VAE解码器转换成我们看到的东西。

那图生图是什么呢?有一张我们原本能看到的图片

但计算机看不懂,需要进一步处理。通过VAE编码处理成Latent被计算机识别到进入潜空间处理,再通过解码处理成我们能看到的东西。

所以整个AI生图的逻辑就是在像素空间和潜空间进行交替。

关于节点报错

工作流是comfyui的核心,我们经常需要保存,导入,修改,定制工作流。

在导入工作流时我们经常会遇见节点缺失导致爆红,无法运行工作流。

那我们怎么有效解决问题?

作为新手的我在近一周折腾下总算解决复杂工作流报错飘红的问题,也将尝试过的几种比较有效的方式分享出来。

希望对其他新人朋友有所益处,更快上手comgfyui体验创作的乐趣。

错漏之处难免,欢迎各位佬们评论指正。

尝试了这4步,我终于解决了报错
1.准备工作:安装Python和Git文件

ComfyUI许多功能和插件都是用 Python 编写的,需要Python环境来运行。安装Python后,可以使用pip或conda等包管理工具来安装依赖库。

Git 用于版本控制和管理项目的代码。通过 Git,可以轻松克隆、更新和管理 ComfyUI 的源代码和插件,方便获取最新的功能和修复。(安装文件在文末,你也可以直接让gpt辅助安装)

comfyui版本更新贼快,本地下载的节点不能同步更新,很有可能导致不兼容运行失败。处理起来也会比较麻烦。

2.Manager节点管理器

Manager,中译名管理器,秋叶整合包包含在内,同时也预装了不少常用节点。

导入新工作流会弹出报错框,提示缺失节点。注意科学上网,保证网络通畅。再点击进入管理器选择安装缺失节点,保证节点能被顺利安装。通常情况下,多数节点报错用节点管理器都能解决。

**那如果管理器解决不了呢?**比如我就碰到过在操作界面爆红,但在管理器缺失节点却不显示的情况。

切换语言,选择全英文界面。QQ或微信截图获取节点全称或手动输入全名,注意一定要完全输入。我之前因为ComfyUI_Lam里面的_没输入怎么着都找不到。拿到节点全称后首先在管理器中搜,找不到再到谷歌浏览器搜。

基本上只要名称对,都能搜到。

到官网点击复制地址,来到custom_nodes文件夹下,右键选择 Open Git Bash here(需装好前面的git文件)

输入git clone 复制的节点官网地址,回车出现 done则安装成功。

反之则将报错信息复制给gpt,我将在第四步展开说。

3.寻求社区支持

每个人知识面不一样,大学生小白和小学生小白学起来不是一个概念,所以零基础和小白不好定义。

但作为新手的我,确实一开始运行日志不会看,中英设置都不晓得哪调节。只是把过程中遇到的问题尽量清晰的描述出来去请教。慢慢的也开始自己学会分析解决问题。

通常清晰的描述问题(交代前因后果)+截图能更快获得解答

有天深夜实在搞不懂问题出在哪,搜也搜不到,就在群里把问题和截图发出来艾特老师,没想到很快得到回复。

也是那次学会了更新插件版本,查看节点报错日志。

之后将报错日志提交给gpt,根据它的方法步骤将最终解决了节点报错。

在comfyui飞书共学大群中,通过在聊天记录搜索关键词也能解决一部分问题。

同时在飞书群看课程回放,还有智能总结和实时字幕,有清晰的结构和目录。

一来回看方便,二则结构一目了然。

4.gpt辅助教学

同样也是来自微群内小伙伴分享,知道有大神专门制作了gpt版comfyui助手。

https://chatgpt.com/g/g-B3qi2zKGB-comfyui-assistant

可以提交报错信息,辅助解决comfyui相关的各类问题。免费版有时长和次数限制,但其实免费版gpt已经能解决大部分问题。

我用git安装节点和环境依赖都是在它的指导下完成的。看不懂代码和英语没关系,将报错信息复制给它。前几天安装python版本不兼容,将报错信息复制给它后,很快它就推荐了更低的版本,并在它的指导下成功安装。

它可以识别报错信息,准确翻译,且多数时候都能辅助我们解决节点报错问题。

同时国内的大语言模型也有不错的表现,如智谱清言,kimi等。如科学上网不便,不妨一试。

通常用Manager管理器安装后依然报错,可以将报错信息复制给它。

通常有这4种情况

  • 情况1,项目文件没有下载完整–手动下载

  • 情况2,没有安装依赖文件–安装依赖文件

  • 情况3,不同节点依赖文件之间有冲突 --创建虚拟环境进行安装

  • 情况4,缺失模型–手动下载,放至指定文件夹

1.打开节点官网,找到节点官方界面

以节点Advanced CLIP Text Encode为例,进入本地放置节点的文件夹custom_nodes 对比所列节点是否有漏下载。

找到缺失节点下载下来,放入节点名下的文件夹内。

有时候网络不好也会导致下载失败,通常晚上网络会好些。

2.没有安装依赖文件

打开官网查看.txt文件,通常是requirements.txt。里面有需要安装的依赖

之前的准备工作我们已经安装好git文件和Python,现在我们就来到节点文件夹

右键选择 Open Git Bash here

pip insta11 -r requirements.txt

输入 pip insta11 -r requirements.txt

点击回车键,安装依赖。

3.依赖文件之间有冲突,创建虚拟环境并激活

导航到节点目录,使用git (右键Open Git Bash here进入)

创建虚拟目录 python -m venv venv

如安装comfyui-ui-zh-chinese节点

用git激活 成功激活后会有(venv)的提示

source venv/Scripts/activate

然后在里面安装依赖

1.安装依赖 pip install -r requirements.txt

2.运行项目 python main.py

3.验证安装 pip list

4.缺失模型–手动下载

以ComfyUI_Lam节点为例,下拉到网页底部,作者会提示需要下载哪些模,需要进行哪些操作,按作者建议来即可。同时有问题也可以在此向作者反馈。

如果是其他显示的英文界面,用谷歌浏览器下拉网页右键点击可选择翻译成中文(简体)。

在…\custom_nodes\ComfyUI_Lam地址栏输入cmd

弹出下面的窗口执行修改文件.bat

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

请添加图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值