[ComfyUI]Flux:你必须要掌握的Flux Controlnet,商业闭环就靠它了

目前Flux开始支持Controlent了,这个一定要掌握,今天就来带大家学习Flux中Controlnet的使用。

0****1

介绍

今天继续来分享Flux生态里面一个很重要插件,就是Controlnet,我们都知道Controlnet对SD有多重要,有了它,才能让商业化更加落地,目前Flux生态已经开始支持Controlnet了,主要是两家机构支持,分别是Xlabs和InstantX,今天一起来介绍介绍。

02

安装相关

我们这里分别介绍两种 Controlent 模型的安装,分别是 XLabs-AI 和InstantX。

2.1 xlabs Controlnet

插件安装:

https://github.com/XLabs-AI/x-flux-comfyui

模型安装:

https://huggingface.co/XLabs-AI

目前Xlabs家的Controlent已经到V3版本了,我们要安装的也是下面这3个。

目前v3版本是在1024x1024分辨率上进行训练的,效果更好。

下载的模型放到下面路径下即可

ComfyUI/models/xlabs/controlnets

2.2 Shakker-Labs Controlent

本来是想介绍InstantX的 FLUX.1-dev-Controlnet-Union的,但是昨天出了新东西。是Union的升级版,看了下,是InstantX联合Shakker_labs联合发布的,那我们直接测试新的即可。

模型地址:

https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro/tree/main

模型很大,还是6.6G,该模型支持7种控制模式,包括canny(0)、tile(1)、深度(2)、模糊(3)、姿势(4)、灰色(5)、低质量(6)。

模型存放路径: \models\controlnet

要使用InstantX家的Controlnet,需要安装如下插件。

https://github.com/EeroHeikkinen/ComfyUI-eesahesNodes

03

使用流程

3.1 xlabs Controlnet

安装好了 x-flux-comfyui 插件后,使用路径如下

完整的Controlnet工作流如下

核心是使用下面这个,预处理我用的以前通用的Aux,这样换其他Controlnet就不需要换节点。

这里我们对比两组,分别是不同反推提示词看效果.

原图如下

第一个用常用的WD1.4来反推提示词,测试canny、depth、head三种效果

下面用我之前推荐的BizyAir插件里面的反推节点 Joy Caption

可以看到效果还是不错的。

3.2 ControlNet-Union-Pro

完整工作流如下,因为这个Union Controlent太大了,我4090用顶配Flux dev跑直接爆显存,所以现在改成用GGUF来测试。这里用Q4版本来测试效果。

核心在于下面这个加载模型的,预处理我还是使用Aux这个通用的

InstantX Flux Union Controlnet Loader节点就是上面我们安装的 ComfyUI-eesahesNodes 插件里面带的。

type入参里面带有7个可选项,我们预处理选择一个模型后,这里type也要对应的选择一下即可。

下面是我出图的一些效果

感觉嘛,不是很好呢,你们也自己测试看看。

04

总结

目前测下来,感觉还是有待提高,对显存占用太大了, 出图也慢,我已经用了GGUF了,出图还是要30多秒,这对我4090配置的电脑来说绝对受不了哈。

如果你实在想用,我个人还是推荐先用Xlabs的V3版本吧,分开用,这样占用显存比较低一些。

期待后续的优化,Flux生态会越来越好。

创作不易,喜欢的点个赞关注走一波~

本篇中的改版工作流全部都打包好了,想要的去后台获取吧。

工作流获取
请添加图片描述

写在最后

全套AI实用插件已打包,有需要的小伙伴可以自取,无偿分享。
在这里插入图片描述
在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
请添加图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

### FluxControlNet 集成概述 Flux 是一种新兴的机器学习框架,以其高效性和灵活性著称[^4]。该框架不仅能够提供强大的计算能力,还支持多种插件扩展功能,其中就包括了ControlNet的支持。 #### ComfyUI FLUX ControlNet 工作流展示 具体来说,在ComfyUI FLUX ControlNet工作流中,通过集成ControlNet来增强输出生成的效果。此工作流程提供了两种主要类型的条件输入:基于深度的信息和基于Canny边缘检测的结果[^1]。这种设计使得模型可以根据不同的特征来进行更精确的学习与预测。 #### 构建模块化的工作流环境 为了实现上述目标,构建了一个结构化的操作界面,它由几个关键部分组成: - 采样控制区允许调整参数以优化性能表现; - ControlNet 控制区则专注于特定任务导向的功能定制; - 最终图片生成保存区完成结果文件管理的任务[^2]。 这些组件共同作用于整个数据流转过程之中,从而实现了高效的自动化流水线作业模式。 #### 应用实例——FLUX-Controlnet-Inpainting 阿里推出的 FLUX-Controlnet-Inpainting 插件进一步拓展了这一领域的能力边界。作为 ALI FLUX-dev 的一部分,这个工具可以有效地修复图像中的遮罩区域,并使其自然地融合到原始场景当中去。尽管现在仍处于alpha测试阶段,但已经展现出了良好的应用前景[^3]。 ```python from flux import load_model, process_image from controlnet import apply_controlnet def integrate_flux_and_controlnet(image_path, mask_area): # 加载预先训练好的Flux模型 model = load_model('path_to_pretrained_flux') # 处理传入的图像 processed_img = process_image(image_path) # 使用ControlNet进行特定任务(如修补) result = apply_controlnet(processed_img, mask_area=mask_area) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值