你能想到一个动漫图片可以转换成真实图像吗?其实,这就是所谓的漫改真人。有很多非常出名的动漫画或者动漫剧,改成由真人去饰演,就叫做漫改影视。
对于很多的动漫爱好者来说,如果一部漫改影视中自己喜欢的角色被真人饰演,而这个演员不符合自己对于这个动漫角色的想象,那真的是挺糟心的。
自AI时代的到来,AI绘画与AI视频的快速发展。运用AI工具,已经可以把动漫图片可以转换成真实图像了,而真实图像也是可以用AI图生视频工具转换为视频的。
因此,有人就针对这种情况,通过AI工具制作漫改短视频,不仅涨粉特别的快,而且也实现了副业收入。
利用AI工具把一张动漫图片转换成一张真人图像,在SD(Stable Diffusion)中,有很多的方法可以实现。
今天,我就来给大家介绍2种方法 :一种是利用SD的“图生图”来实现的;另外一种是运用 Comfyui(工作流)来实现的。
我们以我最喜欢的动漫《异人之下》里的宝儿姐来做例子,下面是6张宝儿姐的动漫原图:
一、SD图生图实现漫改真人图像
打开哩布哩布网 这个网站注册用户每天有300
个算力值给到我们,而生成一张图片根据难易程度仅需要1-20算力值,对于新手学习SD来说是够用的。
点击“在线生图 ”,进入创作页面。在“CHECKPOINT ”中选择“majicMIX realistic麦橘写实
”或者“黑幽人造人 ”。再点击“图生图 ”标签页。在提示词中输入“1 super beautiful
girl”(一个超级漂亮女孩)。然后在“生图 ”模块的“图生图 ”中,把动漫原图上传。
再往下拉,“缩放模式 ”选“拉伸 ”,“采样方法 ”选择“DPM++2M Karras
",“**迭代步数”**改为“30 ”,宽高比按原图,“重绘幅度 ”在“0.45-0.65
”之间。设置好后,拉回上方,点击页面右边的“开始生图”。图片就在生成中。
模型选用“majicMIX realistic麦橘写实”生成的图片如下:
模型选用“黑幽人造人”模型生成的图片如下:
但是,说实话,这种方法生成的真人图像,并不是我心中的宝儿姐 。那么,要想生成在我们心中的想象要怎么做呢?
二、Comfyui(工作流)换脸+漫改真人图像
为了把我喜欢的动漫角色生成我心中的真实图像,我做了一个“动漫图片转真实图像”的工作流,发布在了电子羊(eSheep)网站。
“动漫图片转真实图 像”的工作流(文末可自行扫描获取)
点击“一键运行 ”,进入到操作页面,在“添加脸部图片 ”中,你可以上传你心目中的演员头像 ;在“添加动漫图片
”中,上传原动漫图片 。
下面,我就把最前面我给大家展示的6张宝儿姐的动漫图片都生成真实图像,如下图所示,这才是我心目中的宝儿姐,以后有空的时候,我一定要用这个工作流+AI图生视频工具制作一部属于我心中的“一人之下”视频来
。
资料软件免费放送
次日同一发放请耐心等待
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画
的小伙伴们一点帮助!
需要的可以扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变空间
我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。
其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。
1. 线稿上色
**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。
**应用模型:**Canny、SoftEdge、Lineart。
Canny 示例:(保留结构,再进行着色和风格化)
2. 涂鸦成图
方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。
应用模型:Scribble。
Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:
Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):
3. 建筑/室内设计
**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。
**应用模型:**MLSD。
MLSD 示例:(毛坯变精装)
这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
4. 颜色控制画面
**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。
**应用模型:**Seg。
Seg 示例:(提取参考图内容和结构,再进行着色和风格化)
如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。
5. 背景替换
**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。
**应用模型:**Depth,预处理器 Depth_leres。
**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。
Depth_leres 示例:(将原图背景替换为办公室背景)
6. 图片指令
**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。
应用模型:ip2p,预处理器选择 none。
**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。
Pix2Pix 示例:(让非洲草原下雪)
7. 风格迁移
**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。
**应用模型:**Shuffle。
Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)
8. 色彩继承
**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。
**应用模型:**Color。
Color 示例:(把参考图色彩分布应用到生成图上)
这里就简单说几种应用:
1. 人物和背景分别控制
2. 三维重建
3. 更精准的图片风格化
4. 更精准的图片局部重绘
以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。
同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。
现在AI绘画还是发展初期,大家都在摸索前进。
但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。
如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。
学完后,可以毫无问题地应对市场上绝大部分的需求。
这份AI绘画资料包整理了Stable Diffusion入门学习思维导图、Stable Diffusion安装包、120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册、AI绘画视频教程、AIGC实战等等。
【Stable Diffusion学习路线思维导图】
【Stable Diffusion安装包(含常用插件、模型)】
【AI绘画12000+提示词库】
【AI绘画800+骨骼姿势图】
【AI绘画视频合集】
这份完整版的stable diffusion资料我已经打包好,点击下方卡片即可免费领取!