- 博客(317)
- 收藏
- 关注
原创 2万字长文告诉你,如何成为一个“懂”AI 的产品经理?
坦率来说 2024 年围绕大模型,产品的发展速度比之前预期的要低一些,比如在 BI 领域,Chat BI 声量很大,但落地下来效果并不好,这个也很正常,因为每个人总是会在短期内高估技术带来的价值,而在长期范围低估技术带来的价值。这里面有客观的原因,一项技术基底在真的应用到行业的方方面面本身就是需要过程的,因为这项技术需要去和原本的实现方案做竞争,就像俞军给的知名的需求公式:用户价值= 新体验– 旧体验– 替换成本。很多时候即使用了新技术,收益可能也没有想象的那么大,这是一个事实。
2025-04-09 10:40:30
1235
原创 1分钟部署LM Studio本地大模型(附教程)
无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。通过 LM Studio,任何人都可以在本地免费体验大语言模型的强大功能,探索 AI 技术在各种场景中的应用,是一个极佳的入门工具。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
2025-04-09 10:35:16
436
原创 <大语言书籍推荐>LangChain 简明讲义:从 0 到 1 构建 LLM 应用程序 !
哈喽啊大家,今天又来给大家推荐一本人工智能大模型方面的书籍<作为一本介绍大语言模型和 LangChain 工具的实战手册,《LangChain 简明讲义》以其清晰的结构和易懂的语言,为读者打开了通往人工智能世界的大门。
2025-04-08 15:23:55
431
原创 【一文了解】LlamaIndex 与 LangChain 的区别
LlamaIndex 和 LangChain 都是优秀的 LLM 开发框架,它们各有优势,适用于不同的使用场景。如果你需要构建一个以数据为中心的应用,并且希望使用一个简单易用的框架,那么 LlamaIndex 是一个不错的选择。如果你需要构建一个复杂的 LLM 工作流程,并且需要高度的灵活性和更广泛的 LLM 支持,那么 LangChain 是一个更好的选择.当然,更灵活多变的用法可将两者结合起来使用,发挥各自的优势。最终选择哪个框架需要取决于各位的具体需求和偏好。
2025-04-08 15:15:10
777
原创 【新进展】护理临床智能决策系统:大语言模型与本地知识库的融合与应用
护理临床决策是护理实践中的核心过程,涉及对患者健康状况的评估和最佳护理干预措施的选择。为了提高护理决策的准确性和效率,近年来人工智能(AI)技术逐渐融入这一领域。然而,随着医学信息的迅速增长以及个性化护理需求的增加,传统的护理决策支持系统面临着信息过载和难以跟上最新医学研究进展的挑战。大语言模型(LLMs)的出现为护理领域的智能决策提供了新的机遇。LLMs,如ChatGPT和GPT-4,已经在多个自然语言处理任务中展示了其强大的能力,能够理解和生成复杂的语言。
2025-04-08 15:10:04
989
原创 【文档智能 & RAG】RAG增强之路:增强PDF解析并结构化技术路线方案及思路
本文详细介绍了可编辑pdf和不可编辑pdf(扫描件)的一些开源技术方案和路线,整个技术链路是一个pipline的路线,每一个步骤都需要精细的优化。在RAG中,准确的划分chunks,需要依赖文档的版式分析的精准性。因此,尤其是在对文档进行版面分析时,目标检测的粒度及标签需要对落地场景进行特定的分析,不要妄想着存在一个通用的版式分析模型解决一切文档版式分析问题。
2025-04-08 12:01:10
681
原创 【实战指南】基于RAG的企业级代码生成:从数据清洗到工程化部署
然而,对于企业来说,如何让这些模型了解并遵循内部的代码规范、使用自定义组件和公共库,仍然是一个挑战。AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。未来的工作可以集中在进一步提高系统的上下文理解能力、扩展支持的编程语言和框架,以及更深入地集成到现有的开发工作流程中。
2025-04-08 11:57:15
1009
原创 【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
上下文长度为 8192 个 token使用旋转位置嵌入(RoPE)近似 GeGLU 非线性局部滑动窗口和全局注意力。研究团队在每隔一层中交替使用局部滑动窗口注意力和全局注意力。局部注意力层的滑动窗口大小设置为4096个token,而全局注意力层的跨度设置为8192个token。Logit软封顶。根据Gemini 1.5的方法,研究团队在每个注意力层和最终层限制logit,使得logit的值保持在−soft_cap和+soft_cap之间。
2025-04-07 16:24:04
620
原创 【谷歌权威发布】《智能体Agent》白皮书:42页PDF深度解析!
人类在复杂的模式识别任务中非常出色。然而,他们通常依赖工具——如书籍、谷歌搜索或计算器——来补充他们的先验知识,以便得出结论。与人类类似,生成性人工智能模型也可以通过训练,使用工具来访问实时信息或建议现实世界中的行动。例如,模型可以利用数据库检索工具来访问特定信息,如客户的购买历史,从而生成量身定制的购物推荐。或者,基于用户的查询,模型可以进行多次API调用,向同事发送电子邮件回复,或代表用户完成金融交易。为了实现这一点,模型不仅需要访问一组外部工具,还需要具备规划和执行任务的能力,且能够自我指导。
2025-04-07 16:19:29
411
原创 【大模型训练框架系列】:DeepSpeed深度解析与应用!
DeepSpeed1是由微软研究团队开发的一个深度学习优化库,旨在提供高效、可扩展的大规模模型训练能力。它通过采用先进的并行化策略、内存优化技术(如 ZeRO 内存优化器)和混合精度训练来显著提高训练效率和减少资源需求。
2025-04-07 14:17:13
383
原创 【大模型实战】GLM4大模型微调入门实战(完整代码)
大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。
2025-04-07 14:12:38
790
原创 【大模型】大模型指令微调的“Prompt”模板_大模型微调数据集格式
ShareGPT本身是一个与ChatGPT(GPT-4)模型的聊天记录分享平台,它托管了大量由用户挑选的对话数据集,这些聊天记录通常展示的是聊天机器人自然流畅、具有创意的回答。AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。典型的如训练Vicuna模型所使用的。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
2025-04-07 12:20:07
1226
原创 【本地部署大模型】本地部署开源大模型的完整教程:LangChain + Streamlit+ Llama
在过去的几个月里,大型语言模型(llm)获得了极大的关注,这些模型创造了令人兴奋的前景,特别是对于从事聊天机器人、个人助理和内容创作的开发人员。大型语言模型(llm)是指能够生成与人类语言非常相似的文本并以自然方式理解提示的机器学习模型。这些模型使用广泛的数据集进行训练,这些数据集包括书籍、文章、网站和其他来源。通过分析数据中的统计模式,LLM可以预测给定输入后最可能出现的单词或短语。以上是目前的LLM的一个全景图。背景知识。
2025-04-07 12:09:55
714
原创 【RAG入门教程】Langchian的Embedding介绍与使用
词向量是 NLP 中的一种表示形式,其中词汇表中的单词或短语被映射到实数向量。它们用于捕获高维空间中单词之间的语义和句法相似性。在词嵌入的背景下,我们可以将单词表示为高维空间中的向量,其中每个维度对应一个特定的特征,例如“生物”、“猫科动物”、“人类”、“性别”等。每个单词在每个维度上都分配有一个数值,通常在 -1 到 1 之间,表示该词与该特征的关联程度。
2025-04-06 16:55:48
259
原创 【LLM模型微调】LLMs-微调经验-LLaMA微调指南v7.0
在微调更通用的下游任务时,例如多语言适应,使用多样化的数据集已被证明可以改善在学习新能力和遗忘原模型能力之间的权衡。SQLCoder2通过去除生成的SQL中的空格,让模型专注于学习重要的SQL概念,而不是如空格和缩进之类的技巧。通常的共识是,当LLM的基础性能不够强时,可能“从RAG开始,评估其性能,如果发现效果不佳,再转向微调”,或者认为“RAG可能在某些方面优于微调”(来源)。RAG使用动态提示上下文,该上下文通过用户问题检索,并注入到LLM提示中,以引导模型使用检索到的内容,而不是其预训练的知识。
2025-04-06 16:51:46
987
原创 【LLM大模型】只需三步,本地打造自己的AI大模型个人专属知识库
虽然对于大多数人来讲,由于我们的电脑配置等原因,部署本地大模型并且达到很好的效果是很奢侈的一件事情。但是这并不妨碍我们对其中的流程和原理进行详细的了解如果你对AI大模型应用感兴趣,这套大模型学习资料一定对你有用。
2025-04-06 16:48:06
754
原创 【LLM大模型】Ollama 运行 GGUF 模型
Ollama 默认直接支持很多模型,只需要简单的使用 命令,示例如下:就可安装、启动、使用对应模型。通过这样方式直接支持的模型我们可以通过https://ollama.com/library 找到。在https://huggingface.co/models上有数万的模型,Ollama 默认支持的不可能全部覆盖,那如何支持其它模型呢?这里我们选择个:无内容审核的大模型:CausalLM-14B(https://huggingface.co/TheBloke/CausalLM-14B-GGUF)它是在Qwe
2025-04-06 11:23:10
1071
原创 【LLM-RAG】知识库问答 检索 embedding_rag embedding
BGE,即BAAI General Embedding,是由智源研究院(BAAI)团队开发的一款文本Embedding模型。该模型可以将任何文本映射到低维密集向量,这些向量可用于检索、分类、聚类或语义搜索等任务。此外,它还可以用于LLMs的向量数据库。BGE模型在2023年有多次更新,包括发布论文和数据集、发布新的reranker模型以及更新Embedding模型。BGE模型已经集成到Langchain中,用户可以方便地使用它。此外,BGE模型在MTEB和C-MTEB基准测试中都取得了第一名的成绩。
2025-04-06 11:18:58
958
原创 【LangChain入门】LLM + Agents:打造你的智能管家贾维斯,让大模型拥有三头六臂!
在日常生活中,不难发现,chatgpt通过文本输入进行处理后返回的也是文本内容,就像是一个只有头的人,能听能思考能说话,但是无法行动.而Agent是一种能够自主决策、采取行动以达到某种目标的实体。被解释为"智能体"或者"代理".代理的核心思想是通过大模型来选择要采取的一系列行动.在常规结构下,一系列行动都是硬编码,是已规定好的行为路线,而在代理中,是用大模型作为推理引擎来确定并采取行动的.通俗的讲就是给大模型配备工具,让大模型自己去判断在当前场景需要使用什么工具.
2025-04-06 11:11:23
781
原创 【embedding 神经网络】神经网络算法 —— Embedding(嵌入)!!
本文将从 Embedding 的本质、Embedding的原理、Embedding的应用三个方面,详细介绍Embedding(嵌入)。
2025-04-05 17:32:51
1079
原创 【ChatOCR】OCR+LLM定制化关键信息抽取(附开源大语言模型汇总整理)
在Apache-2.0协议下开源了中文LLaMA模型和指令精调的Alpaca大模型,以进一步促进大模型在中文NLP社区的开放研究。而这种方式依赖于LLM能准确无误的将OCR结果对应到给定列表中的某一个场景,若OCR结果不属于给定场景列表中的任何一个,或者将其错误的归于其他场景,都会导致关键信息提取失败,前者会使程序报错,而后者可能导致不正确的信息提取结果。AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
2025-04-05 17:29:26
783
原创 【AI落地应用实战】构建基于知识图谱的知识问答系统
知识图谱(Knowledge Graph)是一种结构化的语义知识库,它以图形的方式组织和整合信息,使得数据之间的关系变得直观和易于理解。知识图谱的概念融合了计算机科学、数据科学、人工智能等多个领域的技术,旨在通过关联分析揭示数据背后的深层次关系。本文所涉及所有资源均在传知代码平台可获取。
2025-04-05 17:25:24
1035
原创 【AI工作流】FastGPT - 深入解析FastGPT工作流编排:从基础到高级应用的全面指南
在FastGPT中,工作流编排是其核心功能之一。用户使用FastGPT的主要原因是其强大的知识库,而工作流则是提升用户体验的重要保障。通过简单的操作,用户可以快速构建知识库应用,工作流的强大功能可见一斑。在FastGPT 4.7版本中,工作流被称为高级编排,节点拥有多个输入和输出连接点,但不同连接点之间可能存在不兼容的情况,这使得新手用户在上手时面临一定挑战。然而,在4.8版本中,节点的连接点数量得到了显著简化,许多连接点被转化为节点内的参数,使用方式也进行了优化。工作流编排的核心在于节点和流向。
2025-04-05 10:40:16
1117
原创 【AI大模型应用开发】AI+知识图谱极简入门:手把手带你体验LangChain实现知识图谱创建和查询(附代码和源码分析)
知识图谱是一种结构化的语义知识库,它通过图的形式存储和表示实体(如人、地点、组织等)以及实体之间的关系(如人物关系、地理位置关系等)。知识图谱通常用于增强搜索引擎的语义理解能力,提供更丰富的信息和更准确的搜索结果。知识图谱的主要特点包括:1实体(Entity):知识图谱中的基本单元,代表现实世界中的一个对象或概念。2关系(Relation):实体之间的联系,如“属于”、“位于”、“创立者”等。3属性(Attribute):实体所具有的描述性信息,如人的年龄、地点的经纬度等。4。
2025-04-05 10:36:37
941
原创 【AI大模型应用开发】【补充知识】文本向量化与向量相似度(含Python代码)
文本向量(Text Vector)是一种将文本数据转换为数值向量的技术,以便于机器学习和数据分析。通过将文本数据转换为数值向量,我们可以使用机器学习算法对文本数据进行处理和分析。
2025-04-05 10:32:41
562
原创 【AI大模型+Coze】只需三步,定制属于自己的AI旅游计划:Coze工作流与大模型的完美结合
通过以上实操,相信大家已经对工作流和大模型的结合有了一定的理解。Coze工作流是一种用于构建、部署和管理大规模深度学习模型的工作流程。能够简化模型开发和部署过程,使用户能够更高效地利用大规模模型的潜力。自动化和标准化: 自动化了许多繁琐的任务,如数据准备、模型训练和评估弹性的基础架构: 能够在不同的基础设施上运行,包括本地服务器、云服务和边缘设备模型版本控制: 提供了模型版本控制功能,使用户能够轻松地跟踪模型的演变历史集成式部署: 能够将训练好的模型直接部署到生产环境,无需额外的转换或配置。
2025-04-05 10:28:12
1029
原创 【AI大模型】大型模型飞跃升级—文档图像识别领域迎来技术巨变_图像识别大模型
2023年12月31日,第十九届中国图象图形学学会青年科学家会议在广州举行,由中国图象图形学学会主办。该会议的目标是促进青年科学家之间的交流与合作,以提升我国在图像图形领域的科研水平和创新能力。由中国图象图形学学会和上海合合信息(INTSIG)联合承办的《垂直领域大模型论坛》中,专注于探讨大语言模型时代下以ChatGPT为代表的大模型技术对图像图形学领域研究方向或落地应用的潜在价值。包括合合信息丁凯博士在内的多位业内专家对大模型时代文档与图像识别领域的新探索进行了详细介绍。
2025-04-04 14:25:32
649
原创 【AI大模型】Transformer的大规模预训练详解,零基础入门收藏这一篇就够了!!!
首先简单回顾一下transformer模型,其架构如下图:模型主要分为左右两个部分,其中左边的部分是encoder,右边的部分是decoder。看起来很复杂,其实不管是encoder还是decoder,实际上里面就一个核心的部分——Multi-Head Attention,也即多头注意力机制。为了让模型关注到输入序列中不同的相互关系,比如长距离依赖或者词义近似关系,Transformer采用多头注意力机制来增强模型对序列的特征提取能力。
2025-04-04 14:22:11
996
原创 【AI大模型】5分钟手把手系列(二):本地部署Graphrag
通过搭建GraphRAG本地demo后,笔者通过少量的文本内容(三国演义第一章),初略对比了一下传统RAG方案与GraphRAG方案,基于少量文本内容而言,GraphRAG的效果还是符合其宣传内容的,后续更严谨的测试还是需要海量数据的进行验证。希望本文能帮助到对GraphRAG有兴趣的朋友,毕竟读万卷书不如行万里路,看再多的理论介绍,不如自己亲自去动手验证一把来的实在~如果你对AI大模型应用感兴趣,这套大模型学习资料一定对你有用。
2025-04-04 14:18:13
986
原创 【AI】DeepSeek+Dify构建知识库、Agent(智能体)、工作流、聊天助手
昨天看到一个网友说"不会使用DeepSeek,那么这东西到普通人手里,就是百度Plus版",这么说也不无道理。为什么DeepSeek会掀起这么大的浪潮,是因为过去我们想实现的很多事情都要基于机器对自然语言的理解,比如机器人发展了很久,现在有了机器狗、人形机器人,但还是需要遥控去控制,而不具备自主思维。再比如刚出来的Gpt、文心一言,更像是拼凑起来的文字,具有浓重的程序化风格。
2025-04-04 14:13:50
1120
原创 《深入浅出多模态》中:多模态模型原理总结
CLIP采用双塔结构,其核心思想是通过海量的弱监督文本对,通过对比学习,将图片和文本通过各自的预训练模型获得编码向量,通过映射到统一空间计算特征相似度,通过对角线上的标签引导编码器对齐,加速模型收敛。CLIP是一种弱对齐,可应用于图文相似度计算和文本分类等任务。思想:图文特征对齐、指令微调、多任务结构:图像编码器Image Encoder±大语言模型LLM+对齐模块Loss设计:参考对比学习探索不同的图文特征对齐方式,同时增加指令微调能力如果你对AI大模型应用感兴趣,这套大模型学习资料一定对你有用。
2025-04-04 10:30:02
294
原创 “揭秘:为什么羊驼Ollama成为计算机运行大型语言模型的最佳拍档?“
最近,AIM 评测了在计算机上本地运行大语言模型(LLM)的最佳工具,Ollama 脱颖而出,成为最高效的解决方案,提供了无与伦比的灵活性。Ollama 是 Jeffrey Morgan 开发的一款开源工具,它正在彻底改变爱好者在本地终端上运行大语言模型的方式。Ollama 具有友好的用户界面,并与 LLaMA 2 和 Mistral 等流行模型兼容,希望安全、经济、高效地进行大语言模型实验的用户可以轻松考虑使用 Ollama。它能让用户利用先进人工智能模型的力量,而无需依赖云服务或昂贵的硬件。
2025-04-03 16:31:35
552
原创 [人工智能]啥是大模型?一篇文章看懂火遍全网的“AI大模型”
美国商业科技界正在升起两位“新神”。一位是“钢铁侠”埃隆·马斯克,“带领人类走向火星”;一位是“奥特曼”山姆·阿尔特曼,“带领AI走向人类”。大多数人对马斯克很熟悉了,特斯拉汽车在中国道路上疾驰,朋友圈也经常能刷到SpaceX火箭发射和星链卫星的新闻。阿尔特曼是因为ChatGPT爆热,才被国人知晓。2023年,大模型LLM、AGI、AIGC、Prompt成为很多人口中的新名词。本文就从头开始聊一聊:啥是大模型?欢迎阅读~一、啥是大模型。
2025-04-03 16:25:52
550
原创 # 大模型太给力了,数据库运维工作量直接减少 50%!
从技术工程角度来看,利用向量数据库结合大型 AI 模型来构建领域知识库系统的实现并不复杂,然而,这一领域仍然面临着不少挑战和潜在的改进空间。在本文中,我们已经讨论了一些解决方案和技术,但仍然有许多可能的改进和未来发展方向值得深入研究。首先我们认为关键点还是解决向量检索的召回准确性和超长文本处理能力是两个难点,这些方面可能还有更好的方式。此外,大模型本身的能力和文档质量是系统性能的关键因素,因此需要不断升级和维护模型,同时确保文档的及时性和准确性。
2025-04-03 16:18:36
939
原创 AIGC绘画设计基础——SD人物写实图像高质量生成和手部修复
看到一些的图片,就是手部出现一系列的问题;有教程在使用复杂的方法来修复手,但在我看来,如果你遵循下面分享的方法,你生成的人物图像不会出现严重的手部问题,就算要修复也是较为省事的;下面我将要样式用提示词、Embeddings、高分辨率修复方式演示怎么生成高质量手部的人物图像,这些方法不仅适合生成真实人物图片,也适用风格人物插图;这里以真实系大模型beautifulRealistic来演示这些技巧;在正式介绍技巧之前,先说明一下,文章涉及的资源可以进入我上面给的B站链接查看。
2024-09-10 11:55:56
1335
原创 AIGC绘画设计基础——ai绘画主流模型有哪些?
Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。
2024-09-10 11:54:37
1847
原创 AIGC绘画设计基础:全网最全Midjourney出图关键词咒语汇总
Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。
2024-09-09 14:23:23
1075
原创 AIGC绘画设计基础:MJ如何入门?
Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。
2024-09-09 14:22:05
1137
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人