【AI工作流】FastGPT - 深入解析FastGPT工作流编排:从基础到高级应用的全面指南

  • 一、工作流编排概述

  • 二、FastGPT的节点类型

  • * \1. 基础功能插件
    
    • \2. 系统插件
    • \3. 团队插件
  • 三、工作流中的流向

  • 结语

在当今快速发展的人工智能领域,工作流编排的能力已成为提升用户体验和应用效率的关键因素。FastGPT作为一款强大的知识库和工作流工具,凭借其灵活的节点设计和简化的操作流程,帮助用户快速构建高效的知识库应用。本文将深入探讨FastGPT的工作流编排,带您了解其核心功能、节点类型及流向控制,助您在实际应用中游刃有余。

更多文章

  • 获取OpenAI API:获取OpenAI API KEY的两种方式,开发者必看全方面教程!
  • 如何免费无限使用Cursor:AI编程工具的终极指南!

一、工作流编排概述

在FastGPT中,工作流编排是其核心功能之一。用户使用FastGPT的主要原因是其强大的知识库,而工作流则是提升用户体验的重要保障。通过简单的操作,用户可以快速构建知识库应用,工作流的强大功能可见一斑。

在FastGPT 4.7版本中,工作流被称为高级编排,节点拥有多个输入和输出连接点,但不同连接点之间可能存在不兼容的情况,这使得新手用户在上手时面临一定挑战。然而,在4.8版本中,节点的连接点数量得到了显著简化,许多连接点被转化为节点内的参数,使用方式也进行了优化。错误提示变得更加清晰友好,极大降低了新手用户的学习成本,值得为FastGPT的开发团队点赞👏。

工作流编排的核心在于节点和流向。在编排应用时,我们需要考虑节点的功能以及数据流向的控制,接下来将详细探讨这两个方面。img

二、FastGPT的节点类型

在FastGPT中,打开任何已创建的应用并进入流程编排页面,点击左侧的“+”按钮,即可查看所有可用的节点类型,这些节点实际上就是插件。FastGPT官方将插件分为三类:基础功能插件、系统插件和团队插件。接下来,我们将简要介绍这三种插件类型。

1. 基础功能插件

基础功能插件分为几个小类,其中第一类是文本输出。

(1) 文本输出

在文本输出分类中,有两个主要插件:AI对话指定回复 。这两个插件都具备直接输出内容的功能。在我们的知识库应用中,AI对话插件已经得到了广泛应用,任何需要进行AI对话的场景,都可以使用这一插件来实现。它为用户提供了便捷的交互体验,帮助用户快速获取所需信息。

在使用这些插件时,只需调整相应的参数即可。例如,您可以设置所使用的大模型、对Token的限制以及发散度的限制等,以便优化输出效果。

指定回复插件 的主要功能是针对特定文本进行回复。例如,当用户询问某个问题而知识库中未能找到相关信息时,您可以设置插件固定回复一段文本,如“很抱歉,在知识库中查不到相关信息。”此外,该插件还可以用于调试场景。如果您发起了一个HTTP请求,返回的所有内容都可以通过指定回复插件进行输出,这样在调试过程中将极为方便。

img文本输出插件示例

(2) 功能调用

功能调用分类包含四个主要插件:知识库搜索工具调用问题分类文本内容提取

  • 知识库搜索插件 :在上一章中我们已经介绍过该插件,它的主要功能是对接现有的知识库,以便从中检索所需内容。这一插件使得用户能够快速找到相关信息,提高了知识库的使用效率。
  • 工具调用插件 :此插件允许用户调用外部工具和服务,以扩展应用的功能和灵活性。
  • 问题分类插件 :该插件能够帮助将用户提出的问题进行分类,以便更好地管理和处理。
  • 文本内容提取插件 :此插件用于从文本中提取关键信息,帮助用户快速获取所需数据。

通过这些功能调用插件,用户可以实现更复杂的操作和更高效的信息处理。

img功能调用插件示例

工具调用插件 是实验性质的,类似于大模型中的function call,有兴趣的可以去探索一下。

问题分类插件 主要用于对用户提出的问题进行分类。根据分类结果,您可以将其与不同的节点进行对接,从而实现多个分支功能。这种机制类似于编程中的switch语句,使得用户能够根据不同的输入情况,灵活地选择相应的处理路径。

img问题分类插件示例

文本内容提取插件 利用AI技术,从输入的文本中提取所需的信息。例如,在预订会议室的场景中,您可以使用这个插件来自动提取会议地点、会议时间等关键参数。通过这种方式,用户无需手动输入所有信息,系统能够智能识别并提取出重要数据,从而提高了操作的便捷性和效率。

img文本内容提取插件示例

(3) 工具

在工具这一分类中,有三个主要插件:判断器变量更新代码运行

  • 判断器 :此功能在上一个版本中作为系统插件存在,但在当前版本中进行了较大改进。之前,判断器支持正则表达式,而现在已经去掉了这一功能,转而将if/else分支的判断条件进行了明确化,并新增了多种具体的比较符。这使得使用判断器时更加直观和便捷,用户可以更轻松地设定判断逻辑。

img判断器插件示例

  • 代码运行插件 :允许您执行一段JavaScript代码。在这个插件中,您可以定义自己的函数,并且函数中的变量可以从之前的节点或系统变量中提取出来。

img代码运行插件示例

(4) 外部调用

外部调用插件使您能够通过应用调用其他已经编排好的应用。这种设计允许将一些复杂的功能封装成独立的应用,从而在其他应用中直接调用。这不仅隐藏了应用内部的实现逻辑,还无形中提升了应用的复用性,体现了模块化的思路。

img外部调用插件示例

HTTP请求插件 可能是使用频率最高的插件之一。它支持发起多种类型的请求,包括GET、POST、DELETE等。这使得在需要调用外部接口的场景中,HTTP请求插件成为不可或缺的工具。

imgHTTP请求插件示例

Laf函数调用插件 专门用于调用通过Laf平台部署的云函数。如果您的函数是基于Laf部署的,那么使用这个插件将是必不可少的。它使得与云端服务的交互变得简单高效,便于实现更复杂的业务逻辑。

(5) 其他

知识库搜索合并插件 :该插件能够将多个知识库搜索的结果进行合并,并使用RRF(Ranked Retrieval Fusion)算法对结果进行排序。排序后的结果可以输出到后续节点使用,从而为用户提供更为精确和全面的信息。这一功能极大地提升了知识库查询的灵活性和有效性,使得用户能够更方便地获取所需信息。

img知识库搜索合并插件示例

2. 系统插件

系统插件包含三个主要功能:文本加工获取当前时间自定义反馈

  • 文本加工插件 主要用于变量替换。您可以在前面的节点中输出一些值,并在这个插件中将它们作为变量进行文本替换,系统变量也同样适用。通常,这个插件用于格式化输出,例如生成固定格式的文本或输出符合JSON格式的文本等。通过文本加工插件,用户能够灵活地处理和展示数据,提高信息传递的清晰度和规范性。

img文本加工插件示例

3. 团队插件

团队插件主要用于存放您自定义的插件。在这个分类中,您可以找到所有自己创建的各种插件。例如,如果您自定义了一个名为echo的插件,那么它将出现在这里,您可以在不同的应用中自由使用。

img团队插件示例

三、工作流中的流向

在FastGPT 4.8版本的工作流编排中,流向控制得到了大幅简化。每个节点通常有四个连接点:上边和左边的连接点为前置连接点,用于接收前面节点的输入;而右边和下边的连接点则为后置连接点,可以连接到后续节点,并将数据传递给它们。

用户只需根据应用的逻辑需求,顺序连接节点即可。在创建应用时,从FastGPT预置的几类应用中,您可以直观地看到节点之间是如何连接以及数据如何传递的。

为了提高工作流的编排能力,建议多进行操作实践,尽量使用各个插件,深入了解它们的特点。这样,您在实际应用中就能迅速根据业务需求编排出相应的应用。

更多文章

  • 获取OpenAI API:获取OpenAI API KEY的两种方式,开发者必看全方面教程!
  • 如何免费无限使用Cursor:AI编程工具的终极指南!

结语

FastGPT的工作流编排功能为用户提供了灵活、高效的知识库应用构建方式。通过深入了解节点类型和流向控制,您可以更好地利用FastGPT的强大功能,提升工作效率和用户体验。希望本文能为您在FastGPT的使用中提供实用的指导和帮助,让您在工作流编排的道路上越走越远!🌟

AI大模型应用怎么学?

这年头AI技术跑得比高铁还快,“早学会AI的碾压同行,晚入门的还能喝口汤,完全不懂的等着被卷成渣”!技术代差带来的生存压力从未如此真实。
兄弟们如果想入门AI大模型应用,没必要到处扒拉零碎教程,我整了套干货大礼包:从入门到精通的思维导图、超详细的实战手册,还有模块化的视频教程!现在无偿分享。

1.学习思维导图

AI大模型应用所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

2.从入门到精通全套视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

3.技术文档和电子书

整理了行业内PDF书籍、行业报告、文档,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

朋友们如果有需要全套资料包,可以点下面卡片获取,无偿分享!

03-22
### FastGPT 使用教程及相关介绍 #### 什么是 FastGPTFastGPT 是一款用于快速构建和管理大模型应用的工具平台。它提供了友好的图形化界面以及强大的后台支持,帮助开发者轻松实现对话机器人、知识库查询等功能[^1]。 #### 如何安装与部署 FastGPT? 对于 Windows 用户来说,可以从零开始进行本地部署。具体操作如下: - 配置 One-API:通过 Git 拉取所需仓库 `https://github.com/labring/songquanpeng/one-api.git` 和 `https://github.com/labring/FastGPT` 来完成初始环境搭建[^2]。 - 启动 Docker 容器服务后,在浏览器地址栏访问 `http://127.0.0.1:3000` 即可进入系统,默认登录账户为 root,密码为 1234[^3]。 #### 数据导入功能 FastGPT 支持多种数据源形式的导入,包括但不限于 PPT 文件、Word 文档、Excel 表格等形式的内容;同时也兼容网页链接或是外部已有的知识库资源作为输入材料[^4]。 以下是 Python 脚本的一个简单例子来展示如何自动化处理 Excel 并上传到类似这样的平台上: ```python import pandas as pd def read_excel(file_path): df = pd.read_excel(file_path) data_list = [] for index, row in df.iterrows(): item = { 'column_1': str(row['Column1']), 'column_2': str(row['Column2']) } data_list.append(item) return data_list data_to_import = read_excel('example.xlsx') print(data_to_import) ``` #### 总结 以上是对 FastGPT 的基本概述及其部分核心特性的说明。无论是新手还是有一定经验的技术人员都可以借助其详尽的帮助文档迅速上手,并利用社区活跃的支持网络解决遇到的各种难题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值