【详解】Ribbon 负载均衡服务调用原理及默认轮询负载均衡算法源码解析、手写

本文详细介绍了Ribbon作为客户端负载均衡器的作用、工作原理以及其默认的负载均衡策略。Ribbon不同于服务端负载均衡如Nginx,它在微服务调用中实现本地负载。文中列举了Ribbon的多种负载均衡策略,并展示了如何替换默认的轮询策略,通过自定义的负载均衡器实现特定的调用逻辑。此外,还解析了Ribbon默认轮询策略的实现原理并手写了轮询算法。
摘要由CSDN通过智能技术生成

一、什么是 Ribbon

Spring Cloud Ribbon 是基于 Netflix Ribbon 实现的一套客户端 负载均衡的工具。

简单的说,Ribbon 是 Netflix 发布的开源项目,主要功能是提供客户端负载均衡算法服务调用。Ribbon 客户组件提供一系列完善的配置如连接超时时,重试等。简单的说,就是在配置文件中列出 Load Balancer(简称 L B)后面的所有机器,Ribbon 会自动的帮助我们基于某种规则(如简单的轮询,随机连接等)去连接这些机器。同时我们很容易使用 Ribbon 实现自定义的负载均衡算法。

二、LB负载均衡(Load Balancer)是什么

简单地说就是将用户的请求平摊的分配到多个服务上,从而达到系统的 HA (高可用)。

常见的负载均衡软件有 Nginx、LVS、硬件 F5 等。

1、Ribbon 本地负载均衡客户端 VS Nginx 服务端负载均衡的区别

Nginx 是服务器负载均衡,客户端所有请求都会交给 Nginx,然后由 Nginx 实现转发请求。即负载均衡是由服务端实现的。

Ribbon 是本地负载均衡,在调用微服务接口的时候,会在注册中心上获取注册信息服务列表之后缓存到 JVM 本地,从而在本地实现 RPC 远程服务调用技术。

准确的来说,Nginx 是在 web浏览器发送请求到目标服务器的时候实现请求的负载均衡,而 Ribbon 是在微服务之间的调用起到负载均衡的作用。

2、LB负载均衡的分类

  • 集中式 LB(Load Balancer)

    • 即在服务的消费方和提供方之间使用独立的 LB 设施(可以是硬件如 F5,也可以是软件如 Nginx),由该设施负责把访问请求通过某种策略转发至服务的提供方。
  • 进程内 LB(Load Balancer)

    • 将 LB(Load Balancer)逻辑集成到消费方,消费方从注册中心那里获知有哪些地址可以使用,然后自己再从这些地址中选择出一个合适的服务器。
    • Ribbon 属于进程内 LB,它只是一个类库,集成于消费方进程,消费方通过它来获取服务提供方的地址。

三、Ribbon 的作用

一句话:负载均衡 + RestTemplate 远程调用

四、Ribbon 框架如何工作

Ribbon 的工作原理

Ribbon 在工作时分成两部:

1)先选择 Eureka Server ,它优先选择在同一个区域内负载较少的 Eureka Server;

2)再根据用户指定的策略,再从 Eureka Server 取到的服务注册列表中选择一个需要调用的实例地址。

注意:这里的每个服务提供者实例也可以是集群。

五、Ribbon 的负载均衡策略

首先 Ribbon 一共有 七 种负载均衡策略,同时也就是七个类,都实现了接口 IRule 。

IRule:根据特定算法从服务列表中选取一个要访问的服务。

负载均衡策略类的实现以及继承结构体系

  • com.netflix.loadbalancer.RoundRobinRule

    • 轮询(默认规则)
  • com.netflix.loadbalancer.RandomRule

    • 随机
  • com.netflix.loadbalancer.RetryRule

    • 重试(先按照 RoundRobinRule(轮询)的策略获取服务,如果获取服务失败则在指定时间内会进行重试来获取可用服务)
  • com.netflix.loadbalancer.WeightedResponseTimeRule

    • 对 RoundRobinRule 的扩展,响应速度越快的实例选择权重越大,越容易被选择
  • com.netflix.loadbalancer.BestAvailableRule

    • 首先会过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
  • com.netflix.loadbalancer.AvailabilityFilteringRule

    • 先过滤掉故障实例,再选择并发量较小的实例
  • com.netflix.loadbalancer.ZoneAvoidanceRule

    • 复合判断服务所在区域的性能和服务的可用性选择服务器

六、如何替换 Ribbon 默认的负载均衡策略

注意!!!:需要单独建立一个包,不能与主启动类在同一个包以及子包下。

创建独立的新包

1)如图,我新建的包是 com.tianfei.myrule,在自己新创建的包下,创建 MySelfRule 配置类,用来定义需要用来替换的负载均衡策略。(以随机策略为例)

/**
 * @Author Herz
 * @Date 2021/12/28 10:14
 */
@Configuration
public class MySelfRule {

    @Bean
    public IRule myRule(){
        return new RandomRule();   // 定义为随机策略
    }
}

2)在主启动类上加 @RibbonClient 注解,具体内容如下

@SpringBootApplication
@EnableEurekaClient
// name:指明需要调用的服务名
// configuration:在启动该微服务的时候就能去加载我们的自定义 Ribbon 负载均衡策略配置类
@RibbonClient(name = "CLOUD-PROVIDER-PAYMENT", configuration = MySelfRule.class)
public class OrderMain80 {

    public static void main(String[] args) {
        SpringApplication.run(OrderMain80.class, args);
    }
}

到此,替换Ribbon默认的负载均衡策略配置完成,可以启动该服务消费者的主启动类进行测试。

补充:关于为什么自定义的 Ribbon 负载均衡策略的配置类不能与主启动类在同一个包以及其子包下?

可以参考中文官方文档:

为什么自定义的 Ribbon 负载均衡策略的配置类不能与主启动类在同一个包以及其子包下

意思是:这个自定义配置类不能放在@ComponentScan所扫描的当前包下以及子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,达不到特殊化定制的目的了。

同时,Spring Boot 项目的每一个微服务的主启动类上的 @SpringBootApplication 注解所包含了 @ComponentScan,也就是说会自动扫描主启动类所在的包以及其子包,所以自定义的Ribbon负载均衡策略的配置类不能与主启动类在同一个包或者其子包下。

@SpringBootApplication 注解所包含的内容及作用

七、Ribbon 默认负载均衡算法的原理及源码解析

1、默认的轮询负载均衡算法的原理

1)我这里首先通过 List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PROVIDER-PAYMENT") 获取所有支付服务提供者实例集合。具体代码如下:

/**
 * @Author Herz
 * @Date 2021/12/17 9:43
 */
@RestController
@Slf4j
public class PaymentController {

    @Autowired
    private DiscoveryClient discoveryClient;


    @GetMapping("/payment/discovery")
    public Object getDiscovery() {

        List<String> services = discoveryClient.getServices();
        for (String service : services) {
            log.info("********service:" + service);
        }

        // 获取所有服务名为 CLOUD-PROVIDER-PAYMENT 的微服务实例的集合
        List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PROVIDER-PAYMENT");
        for (int i = 0; i < instances.size(); i++) {
            //            log.info(instance.getServiceId() + "\t" + instance.getHost() + "\t" + instance.getPort() + "\t" + instance.getUri());
            log.info("List[" + i +"]  instance = " + instances.get(i).getUri());
        }

        return this.discoveryClient;
    }
}

2)启动该服务提供者微服务,在浏览器地址栏输入地址 http://localhost:8001/payment/discovery 测试,查看控制台日志打印。

获取服务实例列表

日志打印如图结果:

List[0] instance = http://192.168.220.1:8002

List[1] instance = http://192.168.220.1:8001

3)轮询的负载均衡算法:rest接口第几次请求数 % 服务器集群总数量 = 实际调用服务器位置下标 ,每次服务重启动后rest接口计数从1开始。

例如:我这里端口为 8001 和 8002 的服务提供者组成集群,集群总数为 2,按照轮询算法原理:

当前请求为第 1 个时:1 % 2 = 1,对应下标位置为 1,则获取的服务地址为:192.168.220.1:8001

当前请求为第 2 个时:2 % 2 = 0,对应下标位置为 0,则获取的服务地址为:192.168.220.1:8002

当前请求为第 3 个时:3 % 2 = 1,对应下标位置为 1,则获取的服务地址为:192.168.220.1:8001

当前请求为第 4 个时:4 % 2 = 0,对应下表位置为 0,则获取的服务地址为:192.168.220.1:8002

以此类推。。。

2、默认轮询负载均衡算法 RoundRobinRule 的源码解析

RoundRobinRule 源码解析

如何查看健康状态为 UP 的服务实例的数量

3、手写一个轮询负载均衡算法

(1)在 服务提供者集群 8001 和 8002 的 Controller 中添加一下内容方便测试

    @GetMapping(value = "/payment/lb")
    public String getPaymentLB() {
        return serverPort.toString();
    }

(2)将 ApplicationContextConfig 配置类注入 Bean RestTemplate 的时候添加的 @LoadBalanced 注解注掉

/**
 * @Author Herz
 * @Date 2021/12/17 10:45
 */
@Configuration
public class ApplicationContextConfig {

    @Bean
//    @LoadBalanced   // 赋予 RestTemplate 负载均衡功能
    public RestTemplate getRestTemplate(){
        return new RestTemplate();
    }
}

(3)在服务消费者的主启动类所在的包下创建包名为 lb 的包,并在该包下创建 负载均衡器接口类 LoadBalancer

package com.tianfei.springcloud.lb;

import org.springframework.cloud.client.ServiceInstance;
import java.util.List;

/**
 * @Author Herz
 * @Date 2021/12/29 22:52
 *
 * 负载均衡器的操作类(用来通过负载均衡算法获取服务实例)
 *
 */
public interface LoadBalancer {

    ServiceInstance instance(List<ServiceInstance> serviceInstances);
}

(4)在 lb 包下,创建 LoadBalancer 接口类的实现类 MyLoadBalancer

package com.tianfei.springcloud.lb;

import org.springframework.cloud.client.ServiceInstance;
import org.springframework.stereotype.Component;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * @Author Herz
 * @Date 2021/12/29 22:56
 */
@Component
public class MyLoadBalancer implements LoadBalancer {

    // 原子整形参数,初始化为 0
    private AtomicInteger atomicInteger = new AtomicInteger(0);

    /**
     * 通过自旋锁和 CAS 来获取请求是第几次的请求
     *
     * @return 返回请求是第几次的次数
     */
    public final int getAndIncrement() {
        int current;
        int next;

        do {
            current = atomicInteger.get();
	
            // 防止 next 的值越界
            next = current >= Integer.MAX_VALUE ? 0 : current + 1;

        } while (!atomicInteger.compareAndSet(current, next));

        System.out.println("******请求数为第" + next +"次");

        return next;
    }

    /**
     * 通过取模 来获取 相应可用的服务器实例在服务器实例列表的下标
     *
     * @param serviceInstances 服务器实例列表
     * @return 根据下标返回相应的服务器实例
     */
    @Override
    public ServiceInstance instance(List<ServiceInstance> serviceInstances) {

        // 获取服务实例的下标
        int index = getAndIncrement() % serviceInstances.size();

        // 返回下标对应的服务器实例
        return serviceInstances.get(index);
    }
}

(5)在 服务消费者(我的端口是 80)的 Controller 中添加以下内容

@GetMapping("/consumer/payment/lb")
public String getPaymentLB() {
	
    // 获取服务实例名为 CLOUD-PROVIDER-PAYMENT 的服务器列表
    List<ServiceInstance> instanceList = discoveryClient.getInstances("CLOUD-PROVIDER-PAYMENT");

    if (instanceList == null || instanceList.size() == 0) {
        return null;
    }
	
    // 通过自己写的轮询负载均衡算法获取选择的服务器实例
    ServiceInstance serviceInstance = loadBalancer.instance(instanceList);

    // 获取已选择到的服务器实例的 uri 地址
    URI uri = serviceInstance.getUri();

    return restTemplate.getForObject(uri + "/payment/lb", String.class);
}

(6)测试:启动服务提供者集群、Eureka注册中心集群以及服务消费者,在浏览器地址栏输入 localhost/consumer/payment/lb

测试自定义的轮询负载均衡算法

再次刷新页面会发现 8002 与 8001 交替出现。到此手写的轮询算法已经实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值