超详细的SpringCloud底层原理

本文深入探讨了SpringCloud框架的各个组件,包括Eureka的自我保护机制、Ribbon的负载均衡、Hystrix的断路器原理以及Zuul的工作流程。文中详细解释了Eureka如何处理网络故障,避免服务雪崩,Ribbon如何实现客户端负载均衡,Hystrix的熔断和降级策略确保服务高可用,以及Zuul如何通过过滤器进行请求路由和处理。此外,文章还提到了Spring Cloud的配置中心、服务网关、微服务间的通信机制以及分布式日志和监控的重要性。
摘要由CSDN通过智能技术生成

先来个简单的介绍吧!

SpringCloud框架

 

针对这个架构图我分层介绍一下:

1、是web服务器的选型,这个我选择的是nginx+keepalived,haproxy也是一个选择,但是haproxy在反向代理处理跨域访问的时候问题很多。所以我们nginx有些地方做了keep-alive模式处理,减少了三次握手的次数,提高了连接效率。keepalived做nginx的负载,虚拟一个vip对外,两个nginx做高可用,nginx本身反向代理zuul集群。

2、api gateway,这里的zuul很多人诟病,说是速度慢推荐直接用nginx,这里我还是推荐使用zuul的,毕竟zuul含有拦截器和反向代理,在权限管理、单点登录、用户认证时候还是很有用的,而且zuul自带ribbon负载均衡,如果你直接用nginx,还需要单独做一个feign或者ribbon层,用来做业务集群的负载层,毕竟直接把接口暴露给web服务器太危险了。这里zuul带有ribbon负载均衡和hystrix断路器,直接反向代理serviceId就可以代理整个集群了。

3、业务集群,这一层我有些项目是分两层的,就是上面加了一个负载层,下面是从service开始的,底层只是单纯的接口,controller是单独一层由feign实现,然后内部不同业务服务接口互调,直接调用controller层,只能说效果一般,多了一次tcp连接。所以我推荐合并起来,因为做过spring cloud项目的都知道,feign是含有ribbon的,而zuul也含有ribbon,这样的话zuul调用服务集群,和服务集群间接口的互调都是高可用的,保证了通讯的稳定性。Hystrix还是要有的,没有断路器很难实现服务降级,会出现大量请求发送到不可用的节点。当然service是可以改造的,如果改造成rpc方式,那服务之间互调又是另外一种情况了,那就要做成负载池和接口服务池的形式了,负载池调用接口池,接口池互相rpc调用,feign client只是通过实现接口达到了仿rpc的形式,不过速度表现还是不错的。

4、redis缓存池,这个用来做session共享,分布式系统session共享是一个大问题。同时呢,redis做二级缓存对降低整个服务的响应时间,并且减少数据库的访问次数是很有帮助的。当然redis cluster还是redis sentinel自己选择。

5、eurake注册中心这个高可用集群,这里有很多细节,比如多久刷新列表一次,多久监测心跳什么的,都很重要。

6、spring admin,这个是很推荐的,这个功能很强大,可以集成turbine断路器监控器,而且可以定义所有类的log等级,不用单独去配置,还可以查看本地log日志文件,监控不同服务的机器参数及性能,非常强大。它加上elk动态日志收集系统,对于项目运维非常方便。

7、zipkin,这个有两种方式,直接用它自己的功能界面查看方式,或者用stream流的方式,由elk动态日志系统收集。但是我必须要说,这个对系统的性能损害非常大,因为链路追踪的时候会造成响应等待,而且等待时间非常长接近1秒,这在生产环境是不能忍受的,所以生产环境最好关掉,有问题调试的时候再打开。

8、消息队列,这个必须的,分布式系统不可能所有场景都满足强一致性,这里只能由消息队列来作为缓冲,这里我用的是Kafka。

9、分布式事物,我认为这是分布式最困难的,因为不同的业务集群都对应自己的数据库,互相数据库不是互通的,互相服务调用只能是相互接口,有些甚至是异地的,这样造成的结果就是网络延迟造成的请求等待,网络抖动造成的数据丢失,这些都是很可怕的问题,所以必须要处理分布式事物。我推荐的是利用消息队列,采取二阶段提交协议配合事物补偿机制,具体的实现需要结合业务,这里篇幅有限就不展开说了。

10、config配置中心,这是很有必要的,因为服务太多配置文件太多,没有这个很难运维。这个一般利用消息队列建立一个spring cloud bus,由git存储配置文件,利用bus总线动态更新配置文件信息。

11、实时分布式日志系统,logstash收集本地的log文件流,传输给elasticsearch,logstash有两种方式,1、是每一台机器启动一个logstash服务,读取本地的日志文件,生成流传给elasticsearch。2、logback引入logstash包,然后直接生产json流传给一个中心的logstash服务器,它再传给elasticsearch。elasticsearch再将流传给kibana,动态查看日志,甚至zipkin的流也可以直接传给elasticsearch。这个配合spring admin,一个查看动态日志,一个查看本地日志,同时还能远程管理不同类的日志级别,对集成和运维非常有利。

最后要说说,spring cloud的很多东西都比较精确,比如断路器触发时间、事物补偿时间、http响应时间等,这些都需要好好的设计,而且可以优化的点非常多。比如:http通讯可以使用okhttp,jvm优化,nio模式,数据连接池等等,都可以很大的提高性能。

还有一个docker问题,很多人说不用docker就不算微服务。其实我个人意见,spring cloud本身就是微服务的,只需要jdk环境即可。编写dockerfile也无非是集成jdk、添加jar包、执行jar而已,或者用docker compose,将多个不同服务的image组合run成容器而已。但是带来的问题很多,比如通讯问题、服务器性能损耗问题、容器进程崩溃问题,当然如果你有一套成熟的基于k8s的容器管理平台,这个是没问题的,如果没有可能就要斟酌了。而spring cloud本身就是微服务分布式的架构,所以个人还是推荐直接机器部署的,当然好的DevOps工具将会方便很多。

作者github地址:https://github.com/cyc3552637

引言
面试中面试官喜欢问组件的实现原理,尤其是常用技术,我们平时使用了SpringCloud还需要了解它的实现原理,这样不仅起到举一反三的作用,还能帮助轻松应对各种问题及有针对的进行扩展。
以下是《Java深入微服务原理改造房产销售平台》课程讲到的部分原理附图,现在免费开放给大家,让大家轻松应对原理面试题。

服务注册发现组件Eureka工作原理

 

1、Eureka 简介:

Eureka 是 Netflix 出品的用于实现服务注册和发现的工具。 Spring Cloud 集成了 Eureka,并提供了开箱即用的支持。其中, Eureka 又可细分为 Eureka Server 和 Eureka Client。

 

 

1.基本原理
上图是来自eureka的官方架构图,这是基于集群配置的eureka; 
- 处于不同节点的eureka通过Replicate进行数据同步 
- Application Service为服务提供者 
- Application Client为服务消费者 
- Make Remote Call完成一次服务调用

服务启动后向Eureka注册,Eureka Server会将注册信息向其他Eureka Server进行同步,当服务消费者要调用服务提供者,则向服务注册中心获取服务提供者地址,然后会将服务提供者地址缓存在本地,下次再调用时,则直接从本地缓存中取,完成一次调用。

当服务注册中心Eureka Server检测到服务提供者因为宕机、网络原因不可用时,则在服务注册中心将服务置为DOWN状态,并把当前服务提供者状态向订阅者发布,订阅过的服务消费者更新本地缓存。

服务提供者在启动后,周期性(默认30秒)向Eureka Server发送心跳,以证明当前服务是可用状态。Eureka Server在一定的时间(默认90秒)未收到客户端的心跳,则认为服务宕机,注销该实例。

2.Eureka的自我保护机制
在默认配置中,Eureka Server在默认90s没有得到客户端的心跳,则注销该实例,但是往往因为微服务跨进程调用,网络通信往往会面临着各种问题,比如微服务状态正常,但是因为网络分区故障时,Eureka Server注销服务实例则会让大部分微服务不可用,这很危险,因为服务明明没有问题。

为了解决这个问题,Eureka 有自我保护机制,通过在Eureka Server配置如下参数,可启动保护机制
 

eureka.server.enable-self-preservation=true

它的原理是,当Eureka Server节点在短时间内丢失过多的客户端时(可能发送了网络故障),那么这个节点将进入自我保护模式,不再注销任何微服务,当网络故障回复后,该节点会自动退出自我保护模式。

自我保护模式的架构哲学是宁可放过一个,决不可错杀一千

3. 作为服务注册中心,Eureka比Zookeeper好在哪里
著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性)、A(可用性)和P(分区容错性)。由于分区容错性在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡。在此Zookeeper保证的是CP, 而Eureka则是AP。

3.1 Zookeeper保证CP
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。

3.2 Eureka保证AP
Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况: 
1. Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务 
2. Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用) 
3. 当网络稳定时,当前实例新的注册信息会被同步到其它节点中

因此, Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。

4. 总结
Eureka作为单纯的服务注册中心来说要比zookeeper更加“专业”,因为注册服务更重要的是可用性,我们可以接受短期内达不到一致性的状况。不过Eureka目前1.X版本的实现是基于servlet的Java web应用,它的极限性能肯定会受到影响。期待正在开发之中的2.X版本能够从servlet中独立出来成为单独可部署执行的服务。

服务网关组件Zuul工作原理

 

 

一、zuul是什么
zuul 是netflix开源的一个API Gateway 服务器, 本质上是一个web servlet应用。

Zuul 在云平台上提供动态路由,监控,弹性,安全等边缘服务的框架。Zuul 相当于是设备和 Netflix 流应用的 Web 网站后端所有请求的前门。

zuul的例子可以参考 netflix 在github上的 simple webapp,可以按照netflix 在github wiki 上文档说明来进行使用。

二、zuul的工作原理
1、过滤器机制

zuul的核心是一系列的filters, 其作用可以类比Servlet框架的Filter,或者AOP。

zuul把Request route到 用户处理逻辑 的过程中,这些filter参与一些过滤处理,比如Authentication,Load Shedding等。  

 

Zuul提供了一个框架,可以对过滤器进行动态的加载,编译,运行。

Zuul的过滤器之间没有直接的相互通信,他们之间通过一个RequestContext的静态类来进行数据传递的。RequestContext类中有ThreadLocal变量来记录每个Request所需要传递的数据。

Zuul的过滤器是由Groovy写成,这些过滤器文件被放在Zuul Server上的特定目录下面,Zuul会定期轮询这些目录,修改过的过滤器会动态的加载到Zuul Server中以便过滤请求使用。

下面有几种标准的过滤器类型:

Zuul大部分功能都是通过过滤器来实现的。Zuul中定义了四种标准过滤器类型,这些过滤器类型对应于请求的典型生命周期。

(1) PRE:这种过滤器在请求被路由之前调用。我们可利用这种过滤器实现身份验证、在集群中选择请求的微服务、记录调试信息等。

(2) ROUTING:这种过滤器将请求路由到微服务。这种过滤器用于构建发送给微服务的请求,并使用Apache HttpClient或Netfilx Ribbon请求微服务。

(3) POST:这种过滤器在路由到微服务以后执行。这种过滤器可用来为响应添加标准的HTTP Header、收集统计信息和指标、将响应从微服务发送给客户端等。

(4) ERROR:在其他阶段发生错误时执行该过滤器。

内置的特殊过滤器

zuul还提供了一类特殊的过滤器,分别为:StaticResponseFilter和SurgicalDebugFilter

StaticResponseFilter:StaticResponseFilter允许从Zuul本身生成响应,而不是将请求转发到源。

SurgicalDebugFilter:SurgicalDebugFilter允许将特定请求路由到分隔的调试集群或主机。

自定义的过滤器

除了默认的过滤器类型,Zuul还允许我们创建自定义的过滤器类型。

例如,我们可以定制一种STATIC类型的过滤器,直接在Zuul中生成响应,而不将请求转发到后端的微服务。

2、过滤器的生命周期

Zuul请求的生命周期如图,该图详细描述了各种类型的过滤器的执行顺序。

 

3、过滤器调度过程

 4、动态加载过滤器

三、zuul 能做什么?
Zuul可以通过加载动态过滤机制,从而实现以下各项功能:

验证与安全保障: 识别面向各类资源的验证要求并拒绝那些与要求不符的请求。
审查与监控: 在边缘位置追踪有意义数据及统计结果,从而为我们带来准确的生产状态结论。
动态路由: 以动态方式根据需要将请求路由至不同后端集群处。
压力测试: 逐渐增加指向集群的负载流量,从而计算性能水平。
负载分配: 为每一种负载类型分配对应容量,并弃用超出限定值的请求。
静态响应处理: 在边缘位置直接建立部分响应,从而避免其流入内部集群。
多区域弹性: 跨越AWS区域进行请求路由,旨在实现ELB使用多样化并保证边缘位置与使用者尽可能接近。
除此之外,Netflix公司还利用Zuul的功能通过金丝雀版本实现精确路由与压力测试。

四、zuul 与应用的集成方式
1、ZuulServlet - 处理请求(调度不同阶段的filters,处理异常等) 

ZuulServlet类似SpringMvc的DispatcherServlet,所有的Request都要经过ZuulServlet的处理

三个核心的方法preRoute(),route(), postRoute(),zuul对request处理逻辑都在这三个方法里

ZuulServlet交给ZuulRunner去执行。

由于ZuulServlet是单例,因此ZuulRunner也仅有一个实例。

ZuulRunner直接将执行逻辑交由FilterProcessor处理,FilterProcessor也是单例,其功能就是依据filterType执行filter的处理逻辑

FilterProcessor对filter的处理逻辑。

a.首先根据Type获取所有输入该Type的filter,List<ZuulFilter> list。
b.遍历该list,执行每个filter的处理逻辑,processZuulFilter(ZuulFilter filter)
c.RequestContext对每个filter的执行状况进行记录,应该留意,此处的执行状态主要包括其执行时间、以及执行成功或者失败,如果执行失败则对异常封装后抛出。 
d.到目前为止,zuul框架对每个filter的执行结果都没有太多的处理,它没有把上一filter的执行结果交由下一个将要执行的filter,仅仅是记录执行状态,如果执行失败抛出异常并终止执行。
 

 

2、ContextLifeCycleFilter - RequestContext 的生命周期管理 

ContextLifecycleFilter的核心功能是为了清除RequestContext; 请求上下文RequestContext通过ThreadLocal存储,需要在请求完成后删除该对象。 

RequestContext提供了执行filter Pipeline所需要的Context,因为Servlet是单例多线程,这就要求RequestContext即要线程安全又要Request安全。

context使用ThreadLocal保存,这样每个worker线程都有一个与其绑定的RequestContext,因为worker仅能同时处理一个Request,这就保证了Request Context 即是线程安全的由是Request安全的。

3、GuiceFilter - GOOLE-IOC(Guice是Google开发的一个轻量级,基于Java5(主要运用泛型与注释特性)的依赖注入框架(IOC)。Guice非常小而且快。) 

4、StartServer - 初始化 zuul 各个组件 (ioc、插件、filters、数据库等) 

 

5、FilterScriptManagerServlet -  uploading/downloading/managing scripts, 实现热部署

Filter源码文件放在zuul 服务特定的目录, zuul server会定期扫描目录下的文件的变化,动态的读取\编译\运行这些filter,

如果有Filter文件更新,源文件会被动态的读取,编译加载进入服务,接下来的Request处理就由这些新加入的filter处理。

跨域时序图

 

 

Ribbon工作原理


Ribbon 是netflix 公司开源的基于客户端的负载均衡组件,是Spring Cloud大家庭中非常重要的一个模块;Ribbon应该也是整个大家庭中相对而言比较复杂的模块,直接影响到服务调度的质量和性能。全面掌握Ribbon可以帮助我们了解在分布式微服务集群工作模式下,服务调度应该考虑到的每个环节。


本文将详细地剖析Rib

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青藤伽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值