【pytorch】torch.utils.data.DataLoader中的pin_memory属性

doc解释:

https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader
pin_memory (bool, optional): If True, the data loader will copy tensors into CUDA pinned memory before returning them.

通常情况下,由于虚拟内存技术的存在,数据要么在内存中以锁页(“pinned”)的方式存在,要么保存在虚拟内存(磁盘)中。而cuda只接受锁页内存传入,所以在声明新的dataloader对象时,直接令其保存在锁页内存中,后续即可快速传入cuda。否则,数据需要从虚拟内存中先传入锁页内存,再传入cuda,速度将大大增加。其缺点是对于内存的大小要求较高。在这里插入图片描述
参考:https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值