从场景合成Petri网的相关知识
1. 标记偏序(Labelled Partial Orders)
标记偏序(LPOs)的定义基于有向图的概念。有向图是一个二元组 $(V, →)$,其中 $V$ 是有限的节点集,$→⊆V × V$ 是 $V$ 上的二元关系,称为弧集。
- 偏序和标记偏序的定义
- 偏序是一个有向图 $po = (V, <)$,其中 $<$ 是 $V$ 上的非自反和传递的二元关系。
- 标记偏序(LPO)是一个三元组 $lpo = (V, <, l)$,其中 $(V, <)$ 是偏序,$l : V →T$ 是标记函数,$T$ 是标签集。
- 独立节点、共集和割集
- 偏序 $(V, <)$ 中两个不同节点 $v, v′ ∈V$ 若满足 $v ̸< v′$ 且 $v′ ̸< v$,则称它们是独立的。用 $co ⊆V × V$ 表示所有独立节点对的集合。
- 共集是满足 $∀x, y ∈C : x co y$ 的子集 $C ⊆V$。割集是最大的共集。若 $co$ 是传递的,则偏序 $(V, <)$ 称为逐步线性的。
- 顺序化和逐步线性化
- 给定两个偏序 $po1 = (V, <1)$ 和 $po2 = (V, <2)$,若 $<1⊆<2$,则称 $po2$ 是 $po1$ 的