回溯法解八皇后问题及再看八皇后问题优化

本文介绍了使用回溯法解决八皇后问题的原理,并展示了两种不同的解法,包括基于行的放置和二进制位表示的全排列。同时,文章讨论了回溯法中的剪枝策略,以提高算法效率。最后,给出了程序的运行结果,显示有92种不同的解决方案。
摘要由CSDN通过智能技术生成

1、介绍

先上张图来说明用回溯法八皇后问题的每一步:

        


2、程序

看着严蔚敏的书写的,写好后运行一次性成功了,程序如下:

//  N皇后问题  
  
#include <iostream>  
using namespace std;  
  
#define N 8  
  
bool matrix[N + 1][N + 1] = {0};  
  
bool IsLegal(bool matrix[N + 1][N + 1], const int &i, const int &j)  
{  
    //  判断前面的i-1个棋子与matrix[i][j]是否冲突,i为1时合法  
  
    for (int m = 1; m <= i - 1; ++m) {  
        for (int n = 1; n <= N; ++n) {   //  实际每一行只有一个棋子  
            if (matrix[m][n] == 1) {  
                if ( n == j || abs(i - m) == abs(j - n) )   //  key, not bad  
                    return false;  
            }  
        }  
    }  
    return true;  
}  
  
void Print(bool matrix[N + 1][N + 1])  
{  
    static int count = 1;  
    printf("Case %d:\n", count++);  
    for (int i = 1; i <= N; i++) {  
        for (int j = 1; j <= N; j++) {  
            matrix[i][j] == 1 ? printf("%c ", 2) : printf(". ");  
        }  
        cout << endl;  
    }  
    cout << endl;  
}  
  
void Trial(const int i)  
{  
    //  进入本函数时,在N*N的棋盘前i-1行已放置了互不攻击的i-1个棋子  
    //  现从第i行起继续为后续棋子选择合适位置  
  
    if (i > N)   //  输出当前的合法布局  
        Print(matrix);  
    else  
        for (int j = 1; j <= N; ++j) {  
            matrix[i][j] = 1;  
            if ( IsLegal(matrix, i, j) )  
                Trial(i + 1);  
            matrix[i][j] = 0;  
        }  
}  
  
int main(void)  
{  
    Trial(1);  
  
    return 0;  
}  
运行结果:



3、数学问题

关于n皇后的解的个数(8皇后是92个解):

  1. n       a(n)  
  2. 1       1  
  3. 2       0  
  4. 3       0  
  5. 4       2  
  6. 5       10  
  7. 6       4  
  8. 7       40  
  9. 8       92  
  10. 9       352  
  11. 10      724  
  12. 11      2680  
  13. 12      14200  
  14. 13      73712  
  15. 14      365596  
  16. 15      2279184  
  17. 16      14772512  
  18. 17      95815104  
  19. 18      666090624  
  20. 19      4968057848  
  21. 20      39029188884  
  22. 21      314666222712  
  23. 22      2691008701644  
  24. 23      24233937684440  
  25. 24      227514171973736  
  26. 25      2207893435808352  
  27. 26      22317699616364044  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值