1、介绍
1、介绍
2、程序
看着严蔚敏的书写的,写好后运行一次性成功了,程序如下:
// N皇后问题
#include <iostream>
using namespace std;
#define N 8
bool matrix[N + 1][N + 1] = {0};
bool IsLegal(bool matrix[N + 1][N + 1], const int &i, const int &j)
{
// 判断前面的i-1个棋子与matrix[i][j]是否冲突,i为1时合法
for (int m = 1; m <= i - 1; ++m) {
for (int n = 1; n <= N; ++n) { // 实际每一行只有一个棋子
if (matrix[m][n] == 1) {
if ( n == j || abs(i - m) == abs(j - n) ) // key, not bad
return false;
}
}
}
return true;
}
void Print(bool matrix[N + 1][N + 1])
{
static int count = 1;
printf("Case %d:\n", count++);
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {
matrix[i][j] == 1 ? printf("%c ", 2) : printf(". ");
}
cout << endl;
}
cout << endl;
}
void Trial(const int i)
{
// 进入本函数时,在N*N的棋盘前i-1行已放置了互不攻击的i-1个棋子
// 现从第i行起继续为后续棋子选择合适位置
if (i > N) // 输出当前的合法布局
Print(matrix);
else
for (int j = 1; j <= N; ++j) {
matrix[i][j] = 1;
if ( IsLegal(matrix, i, j) )
Trial(i + 1);
matrix[i][j] = 0;
}
}
int main(void)
{
Trial(1);
return 0;
}
运行结果:
3、数学问题
关于n皇后的解的个数(8皇后是92个解):
- n a(n)
- 1 1
- 2 0
- 3 0
- 4 2
- 5 10
- 6 4
- 7 40
- 8 92
- 9 352
- 10 724
- 11 2680
- 12 14200
- 13 73712
- 14 365596
- 15 2279184
- 16 14772512
- 17 95815104
- 18 666090624
- 19 4968057848
- 20 39029188884
- 21 314666222712
- 22 2691008701644
- 23 24233937684440
- 24 227514171973736
- 25 2207893435808352
- 26 22317699616364044