import tensorflow as tf
import numpy as np
# 定义输入和输出数据
x = np.random.rand(100).astype(np.float32)
# 假设m=3,n=4去生成输入,去推理出m、n
y = 3 * 3 * x + 3 * 4
# 定义自定义层
class MyLayer(tf.keras.layers.Layer):
def __init__(self, units=1):
super(MyLayer, self).__init__()
self.units = units
def build(self, input_shape):
self.m = self.add_weight(
name='m',
shape=(1,),
initializer='random_normal',
trainable=True)
self.n = self.add_weight(
name='n',
shape=(1,),
initializer='random_normal',
trainable=True)
def call(self, inputs):
return self.m * self.m * inputs + 3 * self.n
# 定义模型
model = tf.keras.Sequential([
MyLayer()
])
# 定义损失函数
loss_fn = tf.keras.losses.MeanSquaredError()
# 定义优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
# 编译模型
model.compile(optimizer=optimizer, loss=loss_fn)
# 训练模型,每100次输出一次日志
model.fit(x, y, epochs=100, steps_per_epoch=100)
# 打印结果
for layer in model.layers:
print(f"m = {layer.m.numpy()}, n = {layer.n.numpy()}")