已知y=m*m*x+3*n,推理出参数m和n

import tensorflow as tf
import numpy as np

# 定义输入和输出数据
x = np.random.rand(100).astype(np.float32)

# 假设m=3,n=4去生成输入,去推理出m、n
y = 3 * 3 * x + 3 * 4

# 定义自定义层
class MyLayer(tf.keras.layers.Layer):
    def __init__(self, units=1):
        super(MyLayer, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.m = self.add_weight(
            name='m',
            shape=(1,),
            initializer='random_normal',
            trainable=True)
        self.n = self.add_weight(
            name='n',
            shape=(1,),
            initializer='random_normal',
            trainable=True)

    def call(self, inputs):
        return self.m * self.m * inputs + 3 * self.n

# 定义模型
model = tf.keras.Sequential([
    MyLayer()
])

# 定义损失函数
loss_fn = tf.keras.losses.MeanSquaredError()

# 定义优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)

# 编译模型
model.compile(optimizer=optimizer, loss=loss_fn)

# 训练模型,每100次输出一次日志
model.fit(x, y, epochs=100, steps_per_epoch=100)

# 打印结果
for layer in model.layers:
    print(f"m = {layer.m.numpy()}, n = {layer.n.numpy()}")

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值