题目:求多少个组合使得k个不大于n的数(可以取0)的和是n。
主要应用组合数学中的隔板法:将n个物体放进k个篮子里,篮子可以是空的,一共有多少种方法。如果篮子必须是非空的,那么就有C(n-1,k-1)种方法。但这里可以是空的,于是假设再加入k个物体,提前在每个篮子都放上一个,再进行分离。所以C(n-1,k-1)变成C(n+k-1,k-1).
#include <iostream>
#include<cstdio>
using namespace std;
const int mod=1e6;
int c[205][205];
void inital(){
int i,j;
for(i=0;i<=200;i++){
c[i][0]=1;
c[i][i]=1;
}
for(i=2;i<=200;i++){
for(j=1;j<i;j++){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
}
int main(int argc, char *argv[]) {
//freopen("cin.txt","r",stdin);
inital();
int n,k;
while(cin>>n>>k){
if(n==0&&k==0)break;
printf("%d\n",c[n+k-1][k-1]);
}
return 0;
}