poj 3301 Texas Trip(旋转+三分)

博客介绍了如何解决poj 3301问题,即找出覆盖一系列点的最小正方形面积。关键在于坐标旋转公式和三分搜索算法的应用。通过逆时针或顺时针旋转,找到π内的最优边长,使用三分搜索算法解决极值问题,以达到覆盖所有点并使正方形面积最小化的目的。示例中展示了不旋转时边长为20,旋转后找到的最小边长为`abs(A.x-D.x)`。
摘要由CSDN通过智能技术生成

题目:http://poj.org/problem?id=3301

大意:给出一些点求出最小的正方形面积把它们都覆盖掉。

要解决它我们需要会一些基础知识:坐标旋转公式,三分搜索算法。

逆时针旋转:x=xcosθ+ysinθ;  y=ycosθ-xsinθ
顺时针旋转:x=xcosθ-ysinθ;  y=ycosθ+xsinθ
分析可知,在一个π内可以找到最佳的边长,构造出能够覆盖所有的点同时也是最小的正方形。这涉及到极值问题,所以自然联想到三分搜索算法。
以例子2作为说明对象:

不旋转时正方形的边长是20,当旋转时,可以把坐标系看作和正方形一起旋转,它们的定点是正方形的中心,也是原点。最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值