题目:http://poj.org/problem?id=3301
大意:给出一些点求出最小的正方形面积把它们都覆盖掉。
要解决它我们需要会一些基础知识:坐标旋转公式,三分搜索算法。
逆时针旋转:x=xcosθ+ysinθ; y=ycosθ-xsinθ
顺时针旋转:x=xcosθ-ysinθ; y=ycosθ+xsinθ
分析可知,在一个π内可以找到最佳的边长,构造出能够覆盖所有的点同时也是最小的正方形。这涉及到极值问题,所以自然联想到三分搜索算法。
以例子2作为说明对象:
不旋转时正方形的边长是20,当旋转时,可以把坐标系看作和正方形一起旋转,它们的定点是正方形的中心,也是原点。最