stirling 数

博客探讨了斯特林数在解决特定问题上的应用,即如何在不允许使用一号房间钥匙的情况下,计算能够形成环状的所有房间排列方案。问题的关键在于排除一号房间独立成环的情况,因此总方案数为第n类斯特林数s(n,m)减去s(n-1,m-1)。" 105623594,314254,Clickhouse分布式表与ReplicatedMergeTree及Distributed引擎详解,"['数据库', '大数据', '分布式系统', 'Clickhouse引擎', '数据存储']
摘要由CSDN通过智能技术生成
组合数学中的stirling数有两类,第一类,数字有正负,绝对值是包含n个元素的集合分作k个环排列的方法个数;第二类是把包含n个元素的集合划分成k个非空子集的方法的数目。
第一类stirling数递推公式:
S(n,0)=0
S(1,1)=1
S(n,k)=S(n-1,k-1)+(n-1)S(n-1,k)
对于 第一类stirling数递推关系的理解:
第n个元素单独一个环时其他元素的情况: S(n-1 ,k-1); 第n个元素和其他元素构成k个环时,它和第i个元素是挨着的(放在左边),有(n-1)S(n-1,k)种情况。所以结果就是S(n-1,k-1)+(n-1)S(n-1,k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值