组合数学中的stirling数有两类,第一类,数字有正负,绝对值是包含n个元素的集合分作k个环排列的方法个数;第二类是把包含n个元素的集合划分成k个非空子集的方法的数目。
第一类stirling数递推公式:
S(n,0)=0
S(1,1)=1
S(n,k)=S(n-1,k-1)+(n-1)S(n-1,k)
对于
第一类stirling数递推关系的理解:
第n个元素单独一个环时其他元素的情况:
S(n-1
,k-1);
第n个元素和其他元素构成k个环时,它和第i个元素是挨着的(放在左边),有(n-1)S(n-1,k)种情况。所以结果就是S(n-1,k-1)+(n-1)S(n-1,k