抽出一部分时间看了一点编程之美,思考的乐趣确实是一种享受。
求二进制中1的个数
分析:直接判断每一位,时间O(log2(n))。可以只判断”1”的个数。
810=000010002
只利用8本身来快速判断:它不是0,但是 00001000 & 00000111 = 00000000
int check(int n){
int ans=0;
while(n){
ans++;
n=n&(n-1);
}
return ans;
}
N!中末尾0的个数
(十进制中末尾0个数)
分析:这个问题可以转化成有多少个2和5的配对数。因为2的个数总是大于5的个数,即问题变成求解1——n中所有因子5的个数。
如30!,即是1——30的乘积,与5相关的数字有5,10,15,20,25,30,6个数字,同时25其实贡献了2个5,所以共有7个5。30/5=6. 6/5=1
int zero(int n){
int ans=0;
while(n){
ans+=n/5;
n/=5;
}
return ans;
}
求解N!二进制数字最低位1的位置。
(二进制中末尾0的个数)
分析:我们需要求出计算结果二进制形式的末尾0的个数,这和上面的问题联系在了一起,不过这次需要统计因子2的个数,有多少个2就提升多少位。但是书中给出了一种更加优秀的做法。
h2的个数=N2+N4+N8+N16+⋯
例如求解27!的二进制中最低位1的位置。
即n!末尾0的个数就是数字本身n-二进制中1的个数。
int two_zero(int n){
int ans=0,old=n;
while(n){
ans++;
n=n&(n-1);
}
return old-ans;
}
寻找最大的k个数
分析:可以用一个特别的数组装下最大的k个数字,然后对于每一个新的数字判断它和其中最小值的关系,如果小弃之,大则替代最小值并更新这个数组。所以这个数组可以是最小堆,也可以是优先队列。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int g[1010];
void adjust(int p,int k){
int q=p<<1;
if(g[q]>g[q+1]) q++;
if(q>k) return ;
if(g[p]>g[q]){
int t=g[p]; g[p]=g[q]; g[q]=t;
adjust(q,k);
}
}
int main(){
//freopen("cin.txt","r",stdin);
int n,k; // k<1010
while(cin>>n>>k){
for(int i=1;i<=k;i++) scanf("%d",&g[i]);
sort(g+1,g+1+k);
for(int i=k+1;i<=n;i++){
int t;
scanf("%d",&t);
if(t>g[1]) {
g[1]=t;
adjust(1,k);
}
}
for(int i=1;i<=k;i++){
printf("%d ",g[i]);
}
puts("");
}
return 0;
}
最大公约数问题。
求解两个数的最大公约数
分析:传统的gcd()做法是
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
但是由于有取模的存在,有时会影响效率。
我们知道if (a,b)=c and a=p*a’, b%p!=0 then (a,b)=(a’,b)=c。 即可以取出不相关的部分。
那么,结合计算机的运算特点,可以进行左移和右移提取2。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
bool odd(LL a){
return a&1LL;
}
LL gcd(LL a,LL b){
if(a>b) swap(a,b);
if(a==1) return 1;
if(a==0) return b;
if(odd(a) and odd(b)) return gcd(a,b-a);
if(!odd(a) and odd(b)) return gcd(a>>1,b);
if(odd(a) and !odd(b)) return gcd(a,b>>1);
if(!odd(a) and !odd(b)) return gcd(a>>1,b>>1)<<1;
}
int main(){
LL a,b;
while(cin>>a>>b){
cout<<gcd(a,b)<<endl;
}
return 0;
}
计算斐波那契第n项值
快速计算的方式有:
1. 使用通项公式。
F(n)=5√5((1+5√2)n−(1−5√2)n)
最开始的几项值先递推计算出来并保存,后面n较大的情况可以使用此公式。
但是这种方法有浮点误差。
2. 矩阵快速幂,分治策略。
我们知道
所以,由此可以推算第n项。
快速寻找满足条件的两个数。
能否在一个数组里寻找两个数字,使得他们的和等于一个给定的数。
分析:将数组有序排列,比如从小到大。一个指针放左边,一个指针放右边,双方不断向中间移动,如果大了右指针左移,小了左指针右移。直到找到那个数字。
struct node{
int p1, p2;
node(int _p1,int _p2){ p1=_p1; p2=_p2; };
};
node myfind(int a[],int n,int sum){
int i=0,j=n-1;
while(i<j){
if(a[i]+a[j]==sum) return node(i,j);
else if(a[i]+a[j]>sum) j--;
else i++;
}
return node(-1,-1);
}
有一个此问题的拓展应用:http://blog.csdn.net/thearcticocean/article/details/51055538
子数组的最大乘积。
计算长度是N的整数数组中任意N-1个数的组合中最大的一组。
分析:如果没有乘法计算溢出情况出现,可以直接先计算出所有数字的乘积然后针对第i个数字做除法分析即可。
如果存在乘法溢出的情况:
当所有数字的乘积b大于0,当前数字是a[i]–>x, 那么剩下的N-1个数字的乘积y=b/x,函数图像:
当b小于0,y=b/x函数图像:
还有b等于0的情况,如果数组中存在两个以上的0,那么y就等于0。如果仅仅存在一个0,那么我们可以统计正数和负数的个数分析得出结论。
所以,求解正数的个数,负数的个数,0的个数即可。
求解数组的子数组的最大和。
最大连续子序列问题。
分析:如果从前缀和考虑,那么时间复杂度是n^2
中间过程分析,每一个数字和前面数字的和要么相加要么不加,取最大的那种情况,不断更新答案。dp实现线性n的时间复杂度
int max_sum(int *a,int n){
int ans=a[0],temp=a[0];
for(int i=1;i<n;i++){
temp=max(a[i],temp+a[i]);
ans=max(ans,temp);
}
return ans;
}
子数组的最大和 - 二维
和上面的问题类似,但是二维(注意连续)。
分析:直接枚举计数的效果不理想。因为它和上面的问题有一定的相似性,可以借鉴上面的问题的解法。可以固定上下界然后就变成了一维子数组最大和的问题了。
code:
#include <iostream>
#include <cstdio>
using namespace std;
int g[6][6]={
1,-1,5,3,6,-2,
3,-2,7,8,-3,4,
4,2,1,6,-4,7,
5,2,1,0,1,1,
-2,5,3,1,-2,1,
1,2,-1,4,3,0
};
int h[6][6][6]; // h[j][r1][r2]第j列row1到row2的元素的和
int main()
{
for(int j=0;j<6;j++){
for(int r1=0;r1<6;r1++){
for(int r2=r1;r2<6;r2++){
int temp=0;
for(int r=r1;r<=r2;r++){
temp+=g[r][j];
}
h[j][r1][r2]=temp;
}
}
}
int ans=-(1<<29);
for(int r1=0;r1<6;r1++){ //dp
for(int r2=r1;r2<6;r2++){
int temp=h[0][r1][r2];
ans=max(ans,temp);
for(int j=1;j<6;j++){
temp=max(h[j][r1][r2],temp+h[j][r1][r2]);
ans=max(ans,temp);
}
}
}
printf("%d\n",ans);
ans=-(1<<29);
for(int i1=0;i1<6;i1++){ // 暴力
for(int j1=0;j1<6;j1++){
for(int i2=i1;i2<6;i2++){
for(int j2=j1;j2<6;j2++){
int temp=0;
for(int i=i1;i<=i2;i++){
for(int j=j1;j<=j2;j++){
temp+=g[i][j];
}
}
ans=max(ans,temp);
}
}
}
}
printf("%d\n",ans);
return 0;
}