state space model & filtering

state space model, 即状态空间模型, 运动模型用于衡量状态向量 x k x_k xk随时间变化的表示,测量模型连接了状态与观测的关系
离散时间下的状态空间模型可表示为:
{ x k = f k − 1 ( x k − 1 , q k − 1 ) y k = h k ( x k , r k ) \begin{cases} \begin{array}{c} \mathbf{x}_k = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1}) \\ \mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{r}_k) \end{array} \end{cases} {xk=fk1(xk1,qk1)yk=hk(xk,rk)
其中, q k − 1 \mathbf{q}_{k-1} qk1表示运动过程噪声, r k \mathbf{r}_k rk表示测量过程噪声

其等价的 概率表示形式为:
{ p ( x k ∣ x k − 1 ) p ( y k ∣ x k ) \begin{cases} \begin{array}{c} p(\mathbf{x}_k|\mathbf{x}_{k-1}) \\ p(\mathbf{y}_k|\mathbf{x}_{k}) \end{array} \end{cases} {p(xkxk1)p(ykxk)

⇒ \Rightarrow 进一步,给这个一般性的状态空间模型一定假设,假设 q k − 1 \mathbf{q}_{k-1} qk1, r k \mathbf{r}_k rk 与其他所有噪声向量独立

等价的,在概率表示下的假设为,当前状态 x k x_k xk 与 以往时间下所有状态 x i ( i = 0... n − 1 ) x_i (i = 0 ... n-1) xi(i=0...n1) 相互独立,即:
{ p ( x k ∣ x 0 : k − 1 ; y 1 : k − 1 ) = p ( x k ∣ x k − 1 ) p ( y k ∣ x 0 : k ; y 1 : k − 1 ) = p ( y k ∣ x k − 1 ) \begin{cases} p(\mathbf{x}_{k}|\mathbf{x}_{0:k-1}; \mathbf{y}_{1:k-1}) = p(\mathbf{x}_k|\mathbf{x}_{k-1}) \\ p(\mathbf{y}_k|\mathbf{x}_{0:k}; \mathbf{y}_{1:k-1}) = p(\mathbf{y}_k|\mathbf{x}_{k-1}) \end{cases} {p(xkx0:k1;y1:k1)=p(xkxk1)p(ykx0:k;y1:k1)=p(ykxk1)
 由于 x k x_k xk, y k y_k yk J均为随机过程,基于以上假设, x k x_k xk 是一个 Markov 过程

⇒ \Rightarrow 再一次,明确目标: 给定一系列观测,计算 x k x_k xk 的后验概率 P ( x k ∣ y 1 : k ) P(x_k|y_{1:k}) P(xky1:k)

使用 贝叶斯网络 简化 这一过程:
P ( x 0 : k , y 1 : k ) = P ( y 1 : k ∣ x 0 : k ) P ( x 1 : k ) = P ( y 1 ∣ x 0 : k ) P ( y 2 ∣ y 1 , x 0 : k ) … P ( y k ∣ y 1 : k − 1 x 0 : k ) p ( x 0 ) P ( x 1 ∣ x 0 ) P ( x 2 ∣ x 0 : 1 ) … P ( x k ∣ x 0 : k − 1 ) = P ( y 1 ∣ x 1 ) P ( y 2 ∣ x 2 ) … P ( y k ∣ x k ) p ( x 0 ) P ( x 1 ∣ x 0 ) … P ( x k ∣ x k − 1 ) \begin{aligned} P(x_{0:k}, y_{1:k}) &= P(y_{1:k} | x_{0:k}) P(x_{1:k}) \\ &= P(y_1 | x_{0:k}) P(y_2 | y_1, x_{0:k}) \dots P(y_k | y_{1:k-1} x_{0:k}) p(x_0) P(x_1|x_0) P(x_2|x_{0:1}) \dots P(x_k | x_{0:k-1}) \\ &= P(y_1 | x_1) P(y_2 | x_2) \dots P(y_k | x_k) p(x_0) P(x_1|x_0) \dots P(x_k|x_{k-1}) \end{aligned} P(x0:k,y1:k)=P(y1:kx0:k)P(x1:k)=P(y1x0:k)P(y2y1,x0:k)P(yky1:k1x0:k)p(x0)P(x1x0)P(x2x0:1)P(xkx0:k1)=P(y1x1)P(y2x2)P(ykxk)p(x0)P(x1x0)P(xkxk1)
即将此后验概率表示为一系列 单个测量模型,先验,单个运动模型的乘积

⇒ \Rightarrow 进一步,由于 x k x_k xk 具备 Markov 性,给定 k − 1 k-1 k1 时刻的状态 x k − 1 x_{k-1} xk1,则 k k k 时刻的状态 x k x_k xk 独立于此前所有时刻的状态 与观测,即
p ( x k ∣ x 0 : k − 1 , y 1 : k − 1 ) = p ( x k ∣ x k − 1 ) p(\mathbf{x}_k | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}) = p(\mathbf{x}_k | \mathbf{x}_{k-1}) p(xkx0:k1,y1:k1)=p(xkxk1)

那么就可以考虑仅使用前一时刻的状态来 更新 当前时刻的状态

⇒ \Rightarrow 如下图所示
在这里插入图片描述

有了前一个时刻后验概率 和 条件概率假设,就可以对当前状态做预测(全概率公式)
P ( x k ∣ y 1 : k − 1 ) = ∫ P ( x k , x k − 1 ∣ y 1 : k − 1 ) d x k − 1 = ∫ P ( x k ∣ x k − 1 , y 1 : k − 1 ) P ( x k − 1 ∣ y 1 : k − 1 ) d x k − 1 = ∫ P ( x k ∣ x k − 1 ) P ( x k − 1 ∣ y 1 : k − 1 ) d x k − 1 \begin{align*} P(x_k| y_{1:k-1}) & = \int P(x_k, x_{k-1} | y_{1:k-1}) dx_{k-1} \\ & = \int P(x_k | x_{k-1}, y_{1:k-1}) P(x_{k-1} | y_{1:k-1}) dx_{k-1} \\ &= \int P(x_k | x_{k-1}) P(x_{k-1} | y_{1:k-1}) dx_{k-1} \end{align*} P(xky1:k1)=P(xk,xk1y1:k1)dxk1=P(xkxk1,y1:k1)P(xk1y1:k1)dxk1=P(xkxk1)P(xk1y1:k1)dxk1
 其中, ∵ \because x k x_k xk x k − 1 x_{k-1} xk1为条件,且 x k x_k xk 独立于 y 1 : k − 1 y_{1:k-1} y1:k1,可得 P ( x k ∣ x k − 1 , y 1 : k − 1 ) = P ( x k ∣ x k − 1 ) P(x_k | x_{k-1}, y_{1:k-1}) = P(x_k | x_{k-1}) P(xkxk1,y1:k1)=P(xkxk1)

更新过程,根据贝叶斯法则,其结果符合一般性的法则,即后验概率 ∝ \propto 似然 × \times × 先验概率
即:
P ( x k ∣ y 1 : k ) = P ( y k ∣ x k , y 1 : k − 1 ) P ( x k ∣ y 1 : k − 1 ) P ( y k ∣ y 1 : k − 1 ) ∝ P ( y k ∣ x k ) P ( x k ∣ y 1 : k − 1 ) \begin{align*} P(x_k | y_{1:k}) & = \frac{P(y_k | x_k, y_{1:k-1}) P(x_k | y_{1:k-1})}{P(y_k | y_{1:k-1})} \\ & \propto P(y_k | x_k) P(x_k | y_{1:k-1}) \end{align*} P(xky1:k)=P(yky1:k1)P(ykxk,y1:k1)P(xky1:k1)P(ykxk)P(xky1:k1)

如此,便构成了卡尔曼滤波模型所需的基础与条件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值