
AutoGen
文章平均质量分 90
佑瞻
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AutoGen 框架开发常见问题全解析:从智能体实例到模型能力配置
通过参数覆盖默认配置:python# 定义新的消息大小(单位:字节)# 创建带配置的GRPC主机# 创建带配置的工作节点# 启动服务通过解决 AutoGen 开发中的常见问题,我们对智能体实例管理、分布式调用、GRPC 配置和模型能力定制有了更深入的理解。这些技巧能帮助你在实际项目中构建更健壮的智能体系统。原创 2025-06-27 19:53:21 · 865 阅读 · 0 评论 -
AutoGen 自定义 LLM 日志追踪器全流程实现:从绑定到事件捕获的技术详解
追踪器核心类的设计与实现智能体与追踪器的绑定机制LLM 调用事件的捕获与处理多智能体并行追踪的实战方案。原创 2025-06-27 19:42:39 · 405 阅读 · 0 评论 -
从快递配送看 AutoGen 主题订阅机制:四种通信场景的全解析
通过快递公司的生动类比,我们深入理解了 AutoGen 中主题与订阅机制的四种核心场景。从简单的单站点配送模式到复杂的全国多维度网络,每种场景都为智能体通信提供了特定的解决方案,就像快递公司通过不同的配送策略满足多样化的物流需求。原创 2025-06-27 19:17:15 · 1144 阅读 · 0 评论 -
在AutoGen中构建 LlamaIndex 驱动的智能体:从文档理解到动态问答的完整实践
我们首先定义两个关键的数据模型,它们构成了智能体与外部交互的 "语言系统":pythoncontent: str # 资源内容node_id: str # 节点唯一标识score: Optional[float] = None # 匹配分数(可选)content: str # 消息内容sources: Optional[List[Resource]] = None # 来源资源列表(可选)Resource模型用于封装信息来源,包含内容、唯一标识和匹配分数,这在需要追溯回答来源时非常重要。原创 2025-06-27 19:02:46 · 699 阅读 · 0 评论 -
深入 AutoGen 框架:构建支持代码执行与文档问答的 OpenAI 智能体
通过今天的实践,我们成功构建了一个具备代码执行和文档问答能力的 OpenAI 智能体。这种能力组合在实际应用中具有广泛场景:从企业数据分析到知识库问答系统,从代码辅助生成到学术研究支持,都能发挥重要作用。原创 2025-06-27 18:51:57 · 775 阅读 · 0 评论 -
深入 AutoGen 框架:从多智能体结果提取到 GPT-4o 结构化输出的全流程实践
python@dataclassvalue: str # 结果值,实际项目中可扩展为复杂对象这里使用 Python 数据类定义结果类型,value字段可根据需求扩展为包含时间戳、置信度等信息的复合结构。pythonexplanation: str # 步骤解释output: str # 步骤输出(如计算过程)steps: list[Step] # 推理步骤列表final_answer: str # 最终答案# 可添加自定义验证方法。原创 2025-06-27 18:41:52 · 1128 阅读 · 0 评论 -
AutoGen 终止控制双机制深度解析:InterventionHandler 与 TerminationCondition 的对比与实践
TerminationCondition 是对话流程的‘智能裁判’,基于消息历史做出细粒度终止决策;InterventionHandler 是系统运行的‘安全管家’,通过全局事件监听实现资源管控与安全审计。在实际开发中,两者组合使用可构建更健壮的终止控制体系。原创 2025-06-27 18:19:55 · 986 阅读 · 0 评论 -
AutoGen 反思模式深度解析:代码生成与审查的智能协作技术实现
反思模式的本质是通过两个代理的循环交互实现结果优化生成代理(CoderAgent):接收任务并调用 LLM 生成初始输出(如代码片段)。审查代理(ReviewerAgent):对生成结果进行多维度评估,返回结构化审查意见。迭代机制:根据审查结果(通过 / 未通过)决定是否启动下一轮生成,直至满足终止条件。在代码生成场景中,该模式表现为:编码代理生成代码→审查代理评估→编码代理优化代码→重复直至通过,形成类似人类 “编写 - 评审 - 修改” 的协作流程,但完全自动化。协议标准化。原创 2025-06-26 18:46:19 · 882 阅读 · 0 评论 -
AutoGen 多智能体辩论设计模式深度解析:从架构到实践的全维度指南
多智能体辩论模式是 AutoGen 框架中定义的一种多轮交互、拓扑约束、群体优化多轮迭代优化每轮交互中智能体基于其他智能体的响应完善自身结论,通过多轮迭代实现结果优化,而非一次性决策稀疏通信拓扑采用论文《Improving Multi-Agent Debate with Sparse Communication Topology》提出的拓扑结构,每个智能体仅与固定数量邻居交互,避免全连接通信过载群体决策机制聚合智能体通过多数投票等策略整合所有求解智能体的最终响应,利用群体智慧提升决策可靠性。原创 2025-06-26 18:20:11 · 990 阅读 · 0 评论 -
探秘AutoGen智能体混合体:从神经网络架构到多智能体协作的实战指南
方法论创新:用智能体群模拟神经元分层协作,开创多智能体系统新范式工程化优势:标准化消息协议、分层处理流程,降低系统复杂度应用扩展性:天然支持多模型混合、动态层数调整等高级场景。原创 2025-06-26 18:04:02 · 798 阅读 · 0 评论 -
深入理解AutoGen多智能体交接模式:从客户服务场景看 Handoff 设计与实现
智能体类型核心职责分诊智能体分析用户请求,决定转交至哪个专项智能体销售智能体处理产品购买、咨询等销售相关请求退款智能体处理退货、退款等售后请求人类智能体介入处理 AI 无法解决的复杂请求,提供人工决策用户智能体作为用户代理,封装人机交互逻辑主题是智能体通信的 "地址标识":pythonsales_agent_topic_type = "SalesAgent" # 销售主题issues_and_repairs_topic_type = "IssuesAndRepairsAgent" # 售后主题。原创 2025-06-26 16:57:30 · 1118 阅读 · 0 评论 -
深入理解AutoGen群聊模式:多智能体协作实现儿童故事书自动化创作
角色明确:每个智能体专注于特定任务,符合单一职责原则协作有序:通过管理器协调,确保任务按逻辑顺序推进动态灵活:使用 LLM 驱动的选择算法,可根据任务需求动态调整可扩展性:轻松添加新角色智能体,扩展协作能力通过本文的介绍,我们深入探讨了群聊模式的核心概念、实现方式和实际应用。从儿童故事书的创作案例中,我们看到了多个智能体如何通过有序协作,完成从故事构思、内容创作、插图生成到最终审核的完整流程。原创 2025-06-26 15:29:08 · 960 阅读 · 0 评论 -
深入理解AutoGen顺序工作流:多智能体协作实现营销文案自动化生成
在这个工作流中,我们使用简单的文本消息作为智能体间的通信载体:python@dataclass每个消息包含一个content字段,用于传递文本内容这种简单协议适合内容生成场景,也可根据需求扩展为更复杂的数据结构责任清晰:每个智能体专注于单一任务,符合单一职责原则可扩展性:可轻松添加新的处理环节,或替换现有智能体实现确定性流程:消息按固定顺序传递,结果可预测模块化设计:智能体间通过主题解耦,便于独立开发和测试。原创 2025-06-26 15:13:54 · 692 阅读 · 0 评论 -
深入理解AutoGen并发智能体:三种核心模式与实战实现
主题订阅模式适合广播式消息处理,如日志记录、事件通知类型化路由适用于消息分类处理,如优先级任务调度直接消息传递适合需要明确响应的交互场景,如任务委派。原创 2025-06-26 12:43:21 · 842 阅读 · 0 评论 -
AutoGen 命令行代码执行器深度解析:从容器隔离到本地环境的全场景技术实践
默认使用镜像,实际项目中可通过自定义镜像解决依赖问题:dockerfile# 自定义镜像示例:包含TensorFlow依赖初始化时指定自定义镜像:python镜像兼容性要求:只需预装sh和python,即可与执行器兼容执行环境隔离:通过容器技术与虚拟环境实现依赖隔离环境一致性:镜像机制确保 "一次构建,到处运行"安全可控性:容器级隔离防止恶意代码影响宿主系统。原创 2025-06-25 19:44:02 · 977 阅读 · 0 评论 -
深入解析 AutoGen Workbench:智能体的工具协同中枢
python"""获取当前可用工具列表(动态变化)""""""调用指定工具,支持参数传递和取消操作""""""启动Workbench,初始化资源""""""停止Workbench,释放资源"""# 状态管理方法async def reset(self) -> None: # 重置工作区async def save_state(self) -> Mapping[str, Any]: # 保存状态。原创 2025-06-25 19:28:23 · 940 阅读 · 0 评论 -
深入解析 CancellationToken:异步操作取消的全场景指南
尽早检查:在异步任务的循环或关键步骤中尽早调用回调轻量化:取消回调函数应尽量简单,避免阻塞统一令牌:整个流程使用同一个实例异常处理:捕获并进行适当处理资源清理:在finally块中释放资源,无论是否取消现在你应该对 CancellationToken 有了全面的理解 —— 它就像异步世界的 "交通信号灯",让我们能够精准控制任务的生命周期。从基础的取消标志到复杂的回调机制,再到线程安全的实现,每个细节都服务于一个目标:让异步操作能够响应中断请求。原创 2025-06-25 18:55:51 · 1045 阅读 · 0 评论 -
深入理解 AutoGen 模型上下文与工具集成:从对话记忆到功能扩展实战
python# 定义获取股票价格的函数# 随机生成股价(仅用于演示)# 创建函数工具# 运行工具# 输出结果# 输出类似: 143.83831971965762通过今天的深入解析,我们已经掌握了 AutoGen 模型上下文与工具系统的核心能力 —— 从对话历史管理到外部功能扩展,这两大模块共同构成了智能体的 "大脑" 和 "四肢"。模型上下文使智能体拥有了对话记忆能力,而工具系统则赋予了智能体执行复杂任务的能力,两者结合让我们能够构建出真正实用的智能应用。原创 2025-06-25 17:43:42 · 722 阅读 · 0 评论 -
全面解析 AutoGen 模型客户端:从基础调用到智能体构建实战
python# 定义结构化响应模型# 初始化客户端并设置response_formatresponse_format=AgentResponse # 关键:指定Pydantic模型# 构造请求# 调用模型# 解析结构化响应# 输出示例:# happy通过今天的全面解析,我们已经掌握了 AutoGen 模型客户端的核心能力 —— 从基础调用到流式处理,从结构化输出到智能体构建。这套灵活的模型适配体系,不仅能大幅减少我们的集成工作量,还能为应用添加缓存优化、日志记录等高级功能。原创 2025-06-25 17:25:12 · 854 阅读 · 0 评论 -
深入理解 AutoGen 组件配置系统:从蓝图设计到安全实践
python# 第一步:定义配置模型name: str# 第二步:创建组件类(继承ComponentBase和Component)component_type = "custom_component" # 组件类型标识component_config_schema = MyConfig # 配置模型类self.data = [] # 运行时数据(不会被配置包含)# 第三步:实现配置转换方法"""将组件实例转换为配置对象""""""从配置对象创建组件实例"""python。原创 2025-06-25 17:11:56 · 1067 阅读 · 0 评论 -
探索 AutoGen 分布式智能体运行时:从跨进程通信到实战部署
python@dataclass"""自定义消息类型,需确保跨进程可序列化"""注意事项使用 Python 的 dataclass 装饰器定义消息,确保结构清晰消息类型需能被 protobuf 序列化(跨语言场景尤其重要)避免在消息中包含不可序列化的对象(如文件句柄、网络连接)通过分进程、跨主机的实战部署,我们终于看清了 AutoGen 分布式运行时的真实面貌 —— 它不是代码逻辑的简单拆分,而是物理进程的隔离与协同。原创 2025-06-25 17:00:46 · 843 阅读 · 0 评论 -
深入解析 AutoGen 中两种 OpenTelemetry 追踪方式的核心区别
python# 典型用法(手动创建Span并设置属性)# 处理用户消息的业务逻辑...核心特性作用范围:由开发者自由定义,可追踪任意自定义代码块实现原理:通过 OpenTelemetry 的 API 手动创建 Span,控制 Span 的生命周期:创建 Span(start_as_current_span)设置自定义属性(set_attribute)自动管理 Span 的开始与结束(通过上下文管理器)数据特点:完全由开发者控制,可添加业务专属元数据,如:python。原创 2025-06-25 16:27:32 · 729 阅读 · 0 评论 -
保姆级教程:AutoGen 日志系统从入门到实战
pythonfrom dataclasses import dataclass # 导入数据类装饰器@dataclass"""用户登录事件(每个字段都是日志的"列")"""user_id: str # 用户IDlogin_time: str # 登录时间ip_address: str # 登录IPdevice_type: str # 设备类型。原创 2025-06-25 16:07:23 · 754 阅读 · 0 评论 -
深入 AutoGen 核心:消息与通信机制全解析
消息是纯粹的数据载体,不应包含任何逻辑。Pydantic 模型:继承数据类:使用@dataclass装饰器下面是两种定义方式的示例:python# 使用dataclass定义文本消息@dataclass# 使用Pydantic定义图片消息url: str通过本文的介绍,我们深入了解了 AutoGen 中消息与通信的核心机制。从消息的定义到路由规则,从直接消息传递到广播机制,每一个环节都体现了 AutoGen 设计的精巧与灵活。原创 2025-06-24 18:57:01 · 987 阅读 · 0 评论 -
深入 AutoGen 核心:智能体与运行时的原理与实践
要实现一个自定义智能体,我们通常需要从类继承,并为每个需要处理的消息类型实现消息处理方法,使用装饰器进行标记。下面是一个简单的示例:python@dataclass这个智能体实现了对类型消息的处理,当接收到此类消息时,会打印出消息内容。我们可以通过添加多个使用装饰的方法来处理不同类型的消息,也可以在一个处理方法中使用 Python 的联合类型来处理多种相关消息类型。单一职责原则:每个智能体专注于处理特定类型的任务清晰的消息协议:定义明确的消息类型和处理流程。原创 2025-06-24 18:30:27 · 512 阅读 · 0 评论 -
AutoGen 多智能体框架核心概念指南:从基础到实践
智能体(Agent)是通过消息通信、维护自身状态并能对消息作出响应的软件实体。消息交互:通过标准化消息格式与其他智能体通信状态维护:记录历史交互与任务进度动作执行:根据消息触发外部操作(代码执行、API 调用等)python# 基础智能体定义示例"""接收消息并更新状态""""""根据消息内容生成响应"""# 实际应用中会结合LLM或业务逻辑AutoGen 通过标准化的智能体交互模型、灵活的运行时环境和可扩展的架构设计,为多智能体应用开发提供了完整解决方案。原创 2025-06-24 18:20:25 · 919 阅读 · 0 评论 -
AutoGen 框架中追踪与可观测性实战:从调试到性能优化
跨度(Span)是 OpenTelemetry 追踪模型的核心组件唯一性:每个跨度有唯一的标识符层次性:可以嵌套形成树状结构,描述操作间的依赖关系可观测性:通过属性和事件记录操作细节时间性:记录操作的开始和结束时间,用于性能分析流程追踪:记录消息在智能体间的传递路径性能测量:统计各环节耗时,定位瓶颈上下文传递:携带自定义属性,传递业务上下文默认情况下,AutoGen 会自动记录消息的基本生命周期事件。但在复杂场景中,我们需要为特定业务逻辑添加自定义跨度,以实现更精细的追踪:python。原创 2025-06-24 17:11:19 · 1118 阅读 · 0 评论 -
AutoGen 框架中 Memory 与 RAG 的实战应用:构建有记忆的智能体系统
ListMemory 虽然简单,但在处理大规模知识库时存在明显不足。这时,基于向量数据库的记忆实现就成为更好的选择。语义检索:基于内容语义而非精确匹配进行检索高效查询:适合处理海量文档和知识库动态扩展:轻松添加新的记忆条目而不影响查询效率通过 Memory 协议和 RAG 模式,我们为智能体赋予了真正的 "记忆能力",使其能够基于历史信息和外部知识库生成更准确、更相关的响应。从简单的 ListMemory 到复杂的向量数据库记忆,AutoGen 提供了完整的记忆解决方案,满足不同场景的需求。原创 2025-06-24 16:47:06 · 1114 阅读 · 0 评论 -
GraphFlow:AutoGen 中构建多智能体工作流的可视化编程方案
GraphFlow 是 AutoGen AgentChat 中用于有向图执行的团队组件,它通过 DiGraph(有向图)来精确控制智能体之间的执行流程。结构化执行:使用节点表示智能体,边表示执行顺序,构建明确的流程拓扑多模式支持:支持顺序、并行、条件分支和循环等多种流程控制模式消息过滤:可定制每个智能体接收的消息范围,减少无关信息干扰可视化编程:通过 DiGraphBuilder 以链式调用方式构建流程,直观易读。原创 2025-06-24 16:40:31 · 1159 阅读 · 0 评论 -
AutoGen 框架中 Swarm 蜂群模式的多智能体协作实战
Swarm 实现了一种多智能体设计模式,其核心思想是让智能体基于自身能力将任务移交给其他智能体,所有智能体共享相同的消息上下文。与 SelectorGroupChat 依赖中央模型选择发言者不同,Swarm 中的每个智能体可以自主决定将任务移交给谁,形成一种去中心化的协作网络。去中心化协作:智能体自主决定任务移交,无需中央协调灵活的人机交互:通过 HandoffMessage 无缝集成人类参与复杂任务分解:将多阶段任务自动分配给专业智能体处理。原创 2025-06-24 15:50:50 · 1431 阅读 · 0 评论 -
AutoGen 框架中 SelectorGroupChat 的多智能体协作实战
当默认的模型选择逻辑无法满足需求时,我们可以通过参数提供自定义选择函数。例如,我们希望规划智能体在每次专业智能体发言后立即跟进检查进度:python# 如果最后一条消息不是规划智能体发送的,就选择规划智能体return None # 否则使用默认模型选择# 重置团队并应用自定义选择函数应用这个选择函数后,我们会看到对话流程变为:专业智能体发言后,规划智能体立即跟进,确保任务按计划推进。如果需要动态过滤可选智能体列表,可以使用参数。原创 2025-06-24 15:42:47 · 809 阅读 · 0 评论 -
AutoGen 框架中 AgentChat 包的自定义智能体开发实战
在 AutoGen 的 AgentChat 包中,所有智能体都继承自基类,这构成了自定义智能体开发的基础架构。:定义智能体响应消息的核心逻辑,返回Response对象on_reset():负责将智能体重置为初始状态的抽象方法:声明智能体可生成的消息类型列表python# AutoGen中自定义智能体的基础架构示例super().__init__(name, "自定义智能体描述")@property# 核心响应逻辑实现pass# 状态重置逻辑pass方法会在智能体被调用时触发,而。原创 2025-06-24 15:31:26 · 824 阅读 · 0 评论 -
AutoGen 团队状态管理深度解析:从保存到恢复的全流程实践
通过本文的深度解析,我们系统掌握了 AutoGen 团队状态管理的核心技术,从智能体个体状态到多智能体协作状态的完整生命周期。这些技术能够帮助你构建具有记忆能力的智能体团队,在客服、代码协作、内容创作等场景中大幅提升用户体验。原创 2025-06-23 19:56:53 · 731 阅读 · 0 评论 -
深入解析 AutoGen 终止条件:从内置机制到自定义实现的全场景指南
python"""自定义终止条件:当检测到SQL执行成功时终止""""""初始化自定义终止条件:param target_table: 目标表名,用于判断SQL操作是否完成""""""核心判断逻辑:检查消息序列中是否包含目标表的SQL执行成功事件:param messages: 最新的消息序列:return: 满足条件时返回StopMessage,否则返回None"""raise TerminatedException("终止条件已触发,无法重复调用")# 检查工具调用执行事件。原创 2025-06-23 19:40:29 · 600 阅读 · 0 评论 -
深入解析 AutoGen 人在回路机制:从实时交互到迭代优化的全流程实践
在实际项目中,我们通常需要将反馈接口集成到 Web 应用中。以下是使用 FastAPI 框架的示例:python# WebSocket接口处理用户反馈# 自定义输入函数(从WebSocket获取用户消息)# 创建带自定义输入函数的用户代理# 初始化团队(此处简化处理,实际项目需完整配置)# 运行团队并处理交互# ... 完整逻辑参考AgentChat FastAPI示例需要可视化界面的智能体应用多人协作的审核流程实时数据标注任务。原创 2025-06-23 19:21:26 · 907 阅读 · 0 评论 -
深入解析 AutoGen 多智能体团队:从协作机制到实战应用全指南
通过本文的分享,我们系统学习了 AutoGen 多智能体团队的核心能力,从基础的团队创建、运行、观察,到高级的状态控制、单智能体循环应用。多智能体协作不仅能突破单一智能体的能力限制,还能模拟真实的团队分工,让智能体应用在复杂任务中表现得更加出色。原创 2025-06-23 19:05:01 · 1020 阅读 · 0 评论 -
深入解析 AutoGen AgentChat:从消息机制到智能体开发全流程实战
如果内置消息类型无法满足需求,我们可以通过继承基类创建自定义消息:python运行通过本文的分享,我们系统学习了 AutoGen AgentChat 的核心能力:从消息机制到智能体开发,从工具集成到高级特性。在实际开发中,这些能力可以帮助我们构建更智能、更灵活的多智能体系统,尤其是在客服机器人、知识问答、自动化办公等场景中具有广泛应用前景。原创 2025-06-23 18:23:31 · 829 阅读 · 0 评论 -
深入解析 AutoGen 框架中的 AgentChat 模块:从环境搭建到多模型集成实战
通过今天的分享,我们深入了解了 AutoGen 框架下 AgentChat 模块的完整能力:从环境搭建到多模型集成,再到实际的工具调用流程。作为 AutoGen 生态的重要组成部分,AgentChat 真正实现了 "一次开发,多模型适配" 的高效开发模式,尤其适合需要快速迭代的智能体对话场景。原创 2025-06-23 18:10:43 · 1182 阅读 · 0 评论