移动平均

本文介绍了移动平均的主要分类,包括简单移动平均、加权移动平均等,并讨论了使用移动平均时需要注意的问题,例如权重的选择、平滑效果及对未来趋势的预测局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、移动平均的主要分类

1. 简单移动平均

2. 加权移动平均

3. 指数移动平均

4. 分形自适应移动平均

5. 赫尔移动平均

二、移动平均使用时的注意点:

1、加权移动平均的权重选择很重要,比如如果数据有季节性波动,则权重应该也要有季节性调整

2、移动平均可以平滑掉数据的突然波动对整体的影响

3、加大移动平均的期数可以使得平滑效果更好,但是也使得对数据的实际变化更不敏感

4、移动平均值并不能总是很好地反映出未来趋势。由于是平均值,预测值总是停留在过去的水平上

5、移动平均需要大量的过去数据

三、代码实现

# 对size个数据进行移动平均
rol_mean = igmb_only.rolling(window=6).mean()
# 对size个数进行加权移动平均
rol_weighted_mean = pd.DataFrame.ewm(igmb_only, span=6).mean()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值