Power Analysis估算样本容量

本文介绍了统计检验力的概念及其重要性,特别是在确定研究效应稳定性中的作用。通过G*power工具,可以计算样本量、效应量、alpha水平和统计功效。在AB测试中,样本量的合理估算能有效降低成本并确保测试结果的可信度。文中给出了如何利用G*power进行样本量计算的步骤,并强调了在实际操作中如何平衡测试时间和效果目标。
摘要由CSDN通过智能技术生成

Power Analysis 估算样本容量


前言

为什么要进行功效分析?
统计功效指的是某检验能够正确的拒绝一个错误的虚无假设的能力,1-β。 为了确定研究的效应是否稳定。在假设检验中,如果将p<0.05作为拒绝H0的标准,那么得到p<0.05这个结果的统计功效决定了结果的可信度。同时,后验统计功效在样本量很小的情况下可信度也不高。(效应量大,inflated result)


一、使用G*power计算统计检验力

相关变量:样本量、效应量、alpha水平和统计功效。
参考资料:Understanding Statistical Power and Significance Testing
在这里插入图片描述
Power: If you set a power as 80% and alpha as 5%, it means that there is a 80% possibility that the p value of the test will be less than 5%. Generally speaking, the power will be set between 80% and 90%.

元分析ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值