Power Analysis估算样本容量

本文介绍了统计检验力的概念及其重要性,特别是在确定研究效应稳定性中的作用。通过G*power工具,可以计算样本量、效应量、alpha水平和统计功效。在AB测试中,样本量的合理估算能有效降低成本并确保测试结果的可信度。文中给出了如何利用G*power进行样本量计算的步骤,并强调了在实际操作中如何平衡测试时间和效果目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Power Analysis 估算样本容量


前言

为什么要进行功效分析?
统计功效指的是某检验能够正确的拒绝一个错误的虚无假设的能力,1-β。 为了确定研究的效应是否稳定。在假设检验中,如果将p<0.05作为拒绝H0的标准,那么得到p<0.05这个结果的统计功效决定了结果的可信度。同时,后验统计功效在样本量很小的情况下可信度也不高。(效应量大,inflated result)


一、使用G*power计算统计检验力

相关变量:样本量、效应量、alpha水平和统计功效。
参考资料:Understanding Statistical Power and Significance Testing
在这里插入图片描述
Power: If you set a power as 80% and alpha as 5%, it means that there is a 80% possibility that the p value of the test will be less than 5%. Generally speaking, the power will be set between 80% and 90%.

元分析ÿ

### Python 中进行卡方检验时确定合适样本量的方法 在执行卡方检验之前,确保拥有足够的样本量对于获得可靠的结果至关重要。通常情况下,当期望频率低于5时,可能会影响卡方检验的有效性[^2]。 为了评估适合的样本大小,在设计研究阶段可以考虑使用功效分析工具如 `statsmodels` 库中的 `GofChisquarePower` 类来进行计算。这允许基于指定的效果尺寸、显著水平(alpha)、统计效能(power),以及自由度来估计所需的最小样本数量。 下面是一个简单的例子展示如何利用 `statsmodels` 来估算给定条件下所需的最大单元格期望计数值不超过总观测次数5%的情况下所需要的最少观察数目: ```python import numpy as np from statsmodels.stats.power import GofChisquarePower effect_size = 0.3 # 效应大小可以根据具体应用场景调整 alpha = 0.05 # 显著性水平通常是0.05 desired_power = 0.8 # 统计效力一般取值为0.8或更高 degrees_of_freedom = (rows-1)*(cols-1) # 自由度取决于列联表维度 analysis = GofChisquarePower().solve_power(effect_size=effect_size, alpha=alpha, power=desired_power, n_bins=None) min_sample_size_per_cell = analysis / degrees_of_freedom * 0.95 # 调整因子以满足最大预期计数<5% total_min_samples_needed = min_sample_size_per_cell * rows * cols print(f"每组至少需要 {int(np.ceil(min_sample_size_per_cell))} 个样本.") print(f"总共需要大约 {int(total_min_samples_needed)} 个独立观察值才能达到所选条件下的适当功率.") ``` 此代码片段展示了如何通过设定特定的研究参数并应用功效分析技术来推断出合理的最低样本规模需求。需要注意的是,这里的效应大小应当依据实际情况而定;如果不确定,则可以从文献回顾或其他先验信息中获取指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值