卷积神经网络
文章平均质量分 94
Thebluewinds
东北大学电子信息硕士
展开
-
基于pytorch卷积人脸表情识别--毕业设计
基于卷积神经网络的人脸表情识别前言毕业设计内容介绍卷积神经网络的设计卷积网络的模型卷积池化过程详细说明第一层卷积池化过程第二层卷积池化过程第三层卷积池化过程全连接层过程模型的训练过程卷积与池化原理模型如何训练模型的评估指标训练结果分析通过训练曲线分析通过混淆矩阵分析效果通过摄像头识别表情设计流程效果演示部分代码展示总结前言这篇文章记录一下我本科毕业设计的内容。我的课题是人脸表情识别,本来最开始按照历届学长的传统是采用MATLAB用传统的机器学习方法来实现分类的。但是鉴于我以前接触过一点点深度学习的内容,原创 2021-07-13 14:38:58 · 15049 阅读 · 29 评论 -
卷积神经网络的参数
卷积神经网络的参数书写一、卷积神经网络所需要的参数二、用神经单元误差δjl\delta _{j}^{l}δjl来表示各参数梯度分量三、如何计算输出层的δjl\delta _{j}^{l}δjl误差方向传播法师为了应对偏导数计算量巨大而提出。但是梯度下降法仍然是基础。一、卷积神经网络所需要的参数卷积层的过滤器示例:卷积层的统一偏置: bF1b^{F1}_{}bF1输出层权重: w1−11O1w_{1-11}^{O1}w1−11O1输出层偏置: b1O1b_{1}^{O1}b1O1梯度原创 2021-05-28 16:43:20 · 4614 阅读 · 0 评论