第二章、动态规划算法(2.7.2-2.7.2.3)------约束条件下的排列组合问题(中)

本文详细介绍了零钱兑换问题,即给定一组不同面额的硬币和一个总金额,如何找到最少硬币组合。通过动态规划算法,确定状态转移方程和初始值,以及代码实现,包括完整代码、递归求解最少硬币个数和组合。此外,还对比了动态规划和递归算法的效率,并提供了优化方案。
摘要由CSDN通过智能技术生成

目录
2.7.2零钱兑换问题(Coin Change Problem)
2.7.2.1问题
2.7.2.2确定动态规则(DP、状态转移方程)、初始值
(1)直接相关状态
(2)当前状态值的确定
(3)动态规则(DP、状态转移方程)
(4)初始值
2.7.2.3动态规划算法代码实现
(1)完整代码
(2)递归求解在硬币面额的范围里构成总金额amount的最少硬币个数
(3)求解在硬币面额的范围里构成总金额amount的最少硬币组合

2.7.2零钱兑换问题(Coin Change Problem)

2.7.2.1问题

       零钱兑换(Coin Change),给定一组不同面额的硬币和一个总金额amount,假设每种面额硬币有无限多个,在硬币面额的范围里找出能够组成该总金额的最少硬币个数,如果无法组成该总金额,则返回 -1。这里的硬币面额也可以是纸币面额ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thefg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值